18£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{4}$£¬4an+1£¨1-an£©=1£®
£¨1£©Éèbn=$\frac{1}{2{a}_{n}-1}$£¬ÇóÖ¤ÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨2£©ÇóÖ¤$\frac{{a}_{2}}{{a}_{1}}+\frac{{a}_{3}}{{a}_{2}}+\frac{{a}_{4}}{{a}_{3}}$+¡­+$\frac{{a}_{n+1}}{{a}_{n}}$£¼n+1£®

·ÖÎö £¨1£©Ö±½ÓÀûÓõȲîÊýÁе͍Òå½áºÏ4an+1£¨1-an£©=1Ö¤Ã÷ÊýÁÐ{bn}ΪµÈ²îÊýÁУ»
£¨2£©ÓÉ£¨1£©ÖеĵȲîÊýÁÐÇó³öÊýÁÐ{an}µÄͨÏ¿ÉµÃ$\frac{{a}_{n+1}}{{a}_{n}}$£¬È»ºóÓÉÁÑÏîÏàÏû·¨ÇóºÍ£¬¿ÉµÃ$\frac{{a}_{2}}{{a}_{1}}+\frac{{a}_{3}}{{a}_{2}}+\frac{{a}_{4}}{{a}_{3}}$+¡­+$\frac{{a}_{n+1}}{{a}_{n}}$£¼n+1£®

½â´ð Ö¤Ã÷£º£¨1£©¡ßbn=$\frac{1}{2{a}_{n}-1}$£¬
¡à${b}_{n+1}-{b}_{n}=\frac{1}{2{a}_{n+1}-1}-\frac{1}{2{a}_{n}-1}$=$\frac{2{a}_{n}-2{a}_{n+1}}{4{a}_{n+1}{a}_{n}-2{a}_{n}-2{a}_{n+1}+1}$£¬
¡ß4an+1£¨1-an£©=1£¬
¡à${b}_{n+1}-{b}_{n}=\frac{2{a}_{n}-2{a}_{n+1}}{4{a}_{n+1}{a}_{n}-2{a}_{n}-2{a}_{n+1}+4{a}_{n+1}£¨1-{a}_{n}£©}=-1$£®
¡àÊýÁÐ{bn}Ϊ¹«²îÊÇ-1£¬Ê×ÏîΪ-2µÄµÈ²îÊýÁУ»
£¨2£©¡ßÊýÁÐ{bn}Ϊ¹«²îÊÇ-1£¬Ê×ÏîΪ-2µÄµÈ²îÊýÁУ¬
¡à$\frac{1}{2{a}_{n}-1}=-1-n$£¬Ôò${a}_{n}=\frac{n}{n+1}$£¬
¡à$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+1}{n+2}•\frac{n+1}{n}=1+\frac{1}{n£¨n+2£©}=1+\frac{1}{2}£¨\frac{1}{n}-\frac{1}{n+2}£©$£¬
Ôò$\frac{{a}_{2}}{{a}_{1}}+\frac{{a}_{3}}{{a}_{2}}+\frac{{a}_{4}}{{a}_{3}}$+¡­+$\frac{{a}_{n+1}}{{a}_{n}}$=n+$\frac{1}{2}$[$£¨1-\frac{1}{3}£©+£¨\frac{1}{2}-\frac{1}{4}£©+£¨\frac{1}{3}-\frac{1}{5}£©+¡­+£¨\frac{1}{n}-\frac{1}{n+2}£©$]
=$n+\frac{1}{2}£¨1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}£©£¼n+1$£®

µãÆÀ ±¾ÌâÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éÁËµÈ²î¹ØÏµµÄÈ·¶¨£¬ÑµÁ·ÁËÁÑÏîÏàÏû·¨ÇóÊýÁеĺͣ¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=ex£¬g£¨x£©=lnx+m£®
£¨1£©µ±m=-1ʱ£¬Çóº¯ÊýF£¨x£©=$\frac{f£¨x£©}{x}$+x•g£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵļ«Öµ£»
£¨2£©Èôm=2£¬ÇóÖ¤£ºµ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬f£¨x£©£¾g£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=x3-x
£¨1£©ÇóÇúÏßy=f£¨x£©ÔÚµãM£¨1£¬0£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èç¹û¹ýµã£¨1£¬b£©¿É×÷ÇúÏßy=f£¨x£©µÄÈýÌõÇÐÏߣ¬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Æä×¼ÏßÓëxÖáÏཻÓÚµãM£¬¹ý½¹µãFÇÒбÂÊΪ1µÄÖ±ÏßÓëÅ×ÎïÏßÏཻËùµÃÏÒµÄÖеãµÄ×Ý×ø±êΪ2£®ÒÑÖªÖ±Ïßl£ºx=my+$\frac{p}{2}$ÓëÅ×ÎïÏßC½»ÓÚA£¬BÁ½µã£¬ÇÒ$\overrightarrow{AF}$=¦Ë$\overrightarrow{FB}$£¨1¡Ü¦Ë¡Ü3£©£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©Çó$\overrightarrow{MA}$2+$\overrightarrow{MB}$2µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÒÑÖªÍÖÔ²C1£º$\frac{x^2}{4}$+y2=1£¬ÇúÏßC2£ºy=x2-1ÓëyÖáµÄ½»µãΪM£¬¹ý×ø±êÔ­µãOµÄÖ±ÏßlÓëC2ÏཻÓÚA£¬BÁ½µã£¬Ö±ÏßMA£¬MB·Ö±ðÓëC1ÏཻÓÚD£¬EÁ½µã£¬Ö±ÏßMA£¬MBµÄбÂÊ·Ö±ðΪk1£¬k2
£¨1£©Çók1k2µÄÖµ£»
£¨2£©¼Ç¡÷MAB£¬¡÷MDEµÄÃæ»ý·Ö±ðΪS1£¬S2£¬Èô$\frac{S_1}{S_2}$=¦Ë£¬Çó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬C¶Ô±ß·Ö±ðÊÇa£¬b£¬c£®ÒÑÖªa=3£¬c=2£¬cosB=$\frac{1}{4}$£®
£¨¢ñ£©ÇósinA£»
£¨¢ò£©Éèf£¨x£©=bsin2x+$\sqrt{30}$sinxcosx£¨x¡ÊR£©£¬Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍ¶Ô³ÆÖáµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÏòÁ¿$\overrightarrow{OB}$=£¨2£¬0£©£¬$\overrightarrow{OC}$=£¨0£¬2£©£¬$\overrightarrow{CA}$=£¨$\sqrt{3}$cos¦Á£¬$\sqrt{3}$sin¦Á£©£¬Ôò$\overrightarrow{OA}$Óë$\overrightarrow{OB}$¼Ð½ÇµÄ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{¦Ð}{3}$£¬$\frac{5¦Ð}{6}$]B£®[0£¬$\frac{¦Ð}{3}$]C£®[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]D£®[$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¼ÆËã${£¨\frac{{\sqrt{2}i}}{1+i}£©^{100}}$µÄ½á¹ûΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪ʵÊýa£¬b£¬Ôò¡°a£¼b¡±ÊÇ¡°a2£¼b2¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸