精英家教网 > 高中数学 > 题目详情
13.如图,已知椭圆C1:$\frac{x^2}{4}$+y2=1,曲线C2:y=x2-1与y轴的交点为M,过坐标原点O的直线l与C2相交于A,B两点,直线MA,MB分别与C1相交于D,E两点,直线MA,MB的斜率分别为k1,k2
(1)求k1k2的值;
(2)记△MAB,△MDE的面积分别为S1,S2,若$\frac{S_1}{S_2}$=λ,求λ的取值范围.

分析 (1)设过原点的直线l:y=tx,联立$\left\{\begin{array}{l}{y=tx}\\{y={x}^{2}-1}\end{array}\right.$,得x2-ty-1=0,从而求出$\overrightarrow{MA}•\overrightarrow{MB}$=0,由此能求出k1k2
(2)设直线MA:y=k1x-1,直线MB:y=-$\frac{1}{{k}_{1}}$x-1,联立$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{y={x}^{2}-1}\end{array}\right.$,得A(${k}_{1},{{k}_{1}}^{2}-1$),联立$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得D($\frac{8{k}_{1}}{4{{k}_{1}}^{2}+1}$,$\frac{4{{k}_{1}}^{2}-1}{4{{k}_{1}}^{2}+1}$),同理,得B(-$\frac{1}{{k}_{1}}$,$\frac{1}{{{k}_{1}}^{2}}$-1),E($\frac{-8{k}_{1}}{4+{{k}_{1}}^{2}}$,$\frac{4-{{k}_{1}}^{2}}{4+{{k}_{1}}^{2}}$),由此能求出λ的取值范围.

解答 解:(1)设A(x1,y1),B(x2,y2),E(x3,y3),E(x4,y4),过原点的直线l:y=tx,
联立$\left\{\begin{array}{l}{y=tx}\\{y={x}^{2}-1}\end{array}\right.$,得x2-ty-1=0,
$\overrightarrow{MA}$=(x1,y1+1),$\overrightarrow{MB}$=(x2,y2+1),
$\overrightarrow{MA}•\overrightarrow{MB}$=x1x2+(y1+1)(y2+1)=(t2+1)x1x2+t(x1+x2)+1=0,
∴$\overrightarrow{MA}$⊥$\overrightarrow{MB}$,
∴k1k2=-1.
(2)设直线MA:y=k1x-1,直线MB:y=-$\frac{1}{{k}_{1}}$x-1,
联立$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{y={x}^{2}-1}\end{array}\right.$,得A(${k}_{1},{{k}_{1}}^{2}-1$),
联立$\left\{\begin{array}{l}{y={k}_{1}x-1}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得D($\frac{8{k}_{1}}{4{{k}_{1}}^{2}+1}$,$\frac{4{{k}_{1}}^{2}-1}{4{{k}_{1}}^{2}+1}$),
同理,得B(-$\frac{1}{{k}_{1}}$,$\frac{1}{{{k}_{1}}^{2}}$-1),E($\frac{-8{k}_{1}}{4+{{k}_{1}}^{2}}$,$\frac{4-{{k}_{1}}^{2}}{4+{{k}_{1}}^{2}}$),
$\overrightarrow{MA}$=(${k}_{1},{k}_{1}{\;}^{2}$),$\overrightarrow{MB}$=(-$\frac{1}{{k}_{1}}$,$\frac{1}{{{k}_{1}}^{2}}$),$\overrightarrow{MD}$=($\frac{8{k}_{1}}{4{{k}_{1}}^{2}+1}$,$\frac{8{{k}_{1}}^{2}}{4{{k}_{1}}^{2}+1}$),$\overrightarrow{ME}$=($\frac{-8{k}_{1}}{4+{{k}_{1}}^{2}}$,$\frac{8}{4+{{k}_{1}}^{2}}$),
∴S1=$\frac{1}{2}$|${k}_{1}+\frac{1}{{k}_{1}}$|,S2=$\frac{1}{2}$|$\frac{8{k}_{1}}{4{{k}_{1}}^{2}+1}$×$\frac{8}{4+{{k}_{1}}^{2}}$+$\frac{8{{k}_{1}}^{2}}{4{{k}_{1}}^{2}+1}$×$\frac{8{k}_{1}}{4{{+k}_{1}}^{2}}$|=$\frac{32|{k}_{1}|({{k}_{1}}^{2}+1)}{(4{{k}_{1}}^{2}+1)(4+{{k}_{1}}^{2})}$,
∴λ=$\frac{(4{{k}_{1}}^{2}+1)({{k}_{1}}^{2}+4)}{64{{k}_{1}}^{2}}$=$\frac{1}{64}$(4k12+$\frac{4}{{{k}_{1}}^{2}}$+17)≥$\frac{25}{64}$.
当且仅当$4{{k}_{1}}^{2}=\frac{4}{{{k}_{1}}^{2}}$,即k1=±1时,取等号,
∴λ的取值范围[$\frac{25}{64}$,+∞).

点评 本题考查两直线的斜率乘积的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2$\sqrt{5}$,抛物线y=$\frac{1}{16}$x2+1与双曲线C的渐近线相切,则双曲线C的方程为$\frac{{x}^{2}}{4}$-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2ex+$\frac{1}{2}$ax2+ax+1有两个极值,则实数a的取值范围为(  )
A.(-∞,-2]B.(-∞,-2)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.儿子的身高和父亲的身高是(  )
A.确定性关系B.相关关系C.函数关系D.无任何关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:
(1)排成前后两排,前排3人,后排4人;
(2)全体排成一排,女生必须站在一起;
(3)全体排成一排,男生互不相邻;
(4)全体排成一排,甲、乙两人中间恰好有3人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足a1=$\frac{1}{4}$,4an+1(1-an)=1.
(1)设bn=$\frac{1}{2{a}_{n}-1}$,求证数列{bn}为等差数列;
(2)求证$\frac{{a}_{2}}{{a}_{1}}+\frac{{a}_{3}}{{a}_{2}}+\frac{{a}_{4}}{{a}_{3}}$+…+$\frac{{a}_{n+1}}{{a}_{n}}$<n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一元二次不等式x2+ax+b>0的解集为x∈(-∞,-3)∪(1,+∞),则不等式ax2+bx-2<0的解集为(  )
A.(-3,1)B.(-∞,-$\frac{1}{2}$)∪(2,+∞)C.(-$\frac{1}{2}$,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在极坐标系下,点M(2,$\frac{π}{3}$)到直线l:ρ(2cosθ+sinθ)=4的距离为$\frac{2\sqrt{5}-\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F2(3,0),离心率为e.
(1)若e=$\frac{\sqrt{3}}{2}$,求椭圆的方程;
(2)若直线与椭圆y=kx交于A,B两点,M,N分别为线段AF2,BF2 中点,若坐标原点O在以MN为直径的圆上,且$\frac{\sqrt{2}}{2}$<e<$\frac{\sqrt{3}}{2}$,求k2的最小值.

查看答案和解析>>

同步练习册答案