| A. | (-3,1) | B. | (-∞,-$\frac{1}{2}$)∪(2,+∞) | C. | (-$\frac{1}{2}$,2) | D. | (-1,2) |
分析 根据一元二次不等式与对应方程的关系,利用根与系数的关系求出a、b的值,再解对应的不等式即可.
解答 解:一元二次不等式x2+ax+b>0的解集为x∈(-∞,-3)∪(1,+∞),
所以对应方程x2+ax+b=0的两实数根为-3和1,
由根与系数的关系得
$\left\{\begin{array}{l}{-a=-3+1}\\{b=-3×1}\end{array}\right.$,
解得a=2,b=-3;
所以不等式ax2+bx-2<0可化为
2x2-3x-2<0,
即(2x+1)(x-2)<0,
解得-$\frac{1}{2}$<x<2,
即该不等式的解集为(-$\frac{1}{2}$,2).
故选:C.
点评 本题考查了一元二次不等式与对应方程的关系与应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$=$\overrightarrow{b}$ | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$,$\overrightarrow{b}$方向相同 | ||
| C. | $\overrightarrow{a}$=-$\overrightarrow{b}$ | D. | $\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$,$\overrightarrow{b}$方向相反 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}}$] | B. | (-∞,-1] | C. | [${\frac{1}{2}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{3}$,$\frac{5π}{6}$] | B. | [0,$\frac{π}{3}$] | C. | [$\frac{π}{6}$,$\frac{π}{2}$] | D. | [$\frac{π}{6}$,$\frac{5π}{6}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin($\frac{1}{3}$x+$\frac{π}{3}$),x∈R | B. | y=sin(3x+$\frac{π}{3}$),x∈R | C. | y=sin(3x+$\frac{π}{9}$),x∈R | D. | y=-sin3x,x∈R |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com