精英家教网 > 高中数学 > 题目详情
15.已知$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则一定有(  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$,$\overrightarrow{b}$方向相同
C.$\overrightarrow{a}$=-$\overrightarrow{b}$D.$\overrightarrow{a}$∥$\overrightarrow{b}$,且$\overrightarrow{a}$,$\overrightarrow{b}$方向相反

分析 根据向量数量积的应用,利用平方法进行判断即可.

解答 解:∵$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,
∴平方得|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,
即$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,
∴|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,
则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=1,即$\overrightarrow{a}∥\overrightarrow{b}$,且$\overrightarrow{a}$,$\overrightarrow{b}$方向相同.
故选:B.

点评 本题主要考查向量数量积的应用,利用平方法是解决本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ax2+2ax+1在[-3,2]上有最大值4.那么实数a等于(  )
A.-3B.$\frac{3}{8}$C.$-3或\frac{3}{8}$D.$3或-\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,且$B=C,2b=\sqrt{3}a$,则cosA=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2$\sqrt{5}$,抛物线y=$\frac{1}{16}$x2+1与双曲线C的渐近线相切,则双曲线C的方程为$\frac{{x}^{2}}{4}$-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\frac{lnx}{x}$与函数g(x)=kx的图象上存在关于原点对称的点,则实数k的最大值是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x+ax2+blnx在x=$\frac{3}{2}$处取得极大值为-$\frac{3}{4}$+3ln$\frac{3}{2}$.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某中学高三文科班学生共800人参加了数学与地理的水平测试,学校决定利用随机数表从总抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号;
(1)如果从第8行第7列的数开始向右读,请你一次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
84 42 17 53 31   57 24 55 06 88   77 04 74 47 67   21 76 33 50 25  83 92 12 06 76
63 01 63 78 59   16 95 56 67 19   98 10 50 71 75   12 86 73 58 07  44 39 52 38 79 
33 21 12 34 29   78 64 56 07 82   52 42 07 44 38   15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级,横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,
①若在该样本中,数学成绩优秀率30%,求a,b的值.
人数数学
优秀良好及格
地理优秀7205
良好9186
及格a4b
②在地理成绩及格的学生中,已知a≥10,b≥8,求数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2ex+$\frac{1}{2}$ax2+ax+1有两个极值,则实数a的取值范围为(  )
A.(-∞,-2]B.(-∞,-2)C.(-2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一元二次不等式x2+ax+b>0的解集为x∈(-∞,-3)∪(1,+∞),则不等式ax2+bx-2<0的解集为(  )
A.(-3,1)B.(-∞,-$\frac{1}{2}$)∪(2,+∞)C.(-$\frac{1}{2}$,2)D.(-1,2)

查看答案和解析>>

同步练习册答案