精英家教网 > 高中数学 > 题目详情
3.若函数f(x)满足f(a+b)=f(a)•f(b),f(1)=2,则$\frac{{f}^{2}(1)+f(2)}{f(1)}$+$\frac{{f}^{2}(3)+f(6)}{f(5)}$=8.

分析 由已知得$\frac{f(n+1)}{f(n)}$=f(1)=2,f2(n)=f(2n),由此能求出结果.

解答 解:∵函数f(x)满足f(a+b)=f(a)•f(b),f(1)=2,
∴$\frac{f(n+1)}{f(n)}$=f(1)=2,f2(n)=f(2n),
∴$\frac{{f}^{2}(1)+f(2)}{f(1)}$+$\frac{{f}^{2}(3)+f(6)}{f(5)}$=$\frac{2f(2)}{f(1)}$+$\frac{2f(6)}{f(5)}$=4+4=8.
故答案为:8.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知一个正方形的边长为6,现用直径为2的硬币投掷到此正方方形上,则硬币落下后与此正方形的边有公共点的概率为(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.向量的坐标运算:设$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则$\overrightarrow{a}$±$\overrightarrow{b}$=(x1±x2,y1±y2),
λ$\overrightarrow{a}$=(λx1,λy1),若(x1,y1),B(x2,y2),则$\overrightarrow{A}$B=(x2-x1,y2-y1
1°$\overrightarrow{a}$•$\overrightarrow{b}$=x1x2+y1y2;$\stackrel{-2}{a}$=${{x}_{1}}^{2}+{{y}_{1}}^{2}$
2°$\overrightarrow{a}$⊥$\overrightarrow{b}$?x1x2+y1y2=0,$\overrightarrow{a}$∥$\overrightarrow{b}$?x1y2-x2y1=0
3°|$\overrightarrow{a}$|=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=$\frac{4}{{x}^{2}}$在x=2处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等差数列{an}中,a5<0,且a6>0,且a6>|a5|,Sn是其前n项和,则下列判断正确的是(  )
A.S1,S2,S3均小于0,S4,S5,S6,…均大于0
B.S1,S2,…,S5均小于0,S6,S7,…均大于0
C.S1,S2,…S9均小于0,S10,S11,…均大于0
D.S1,S2,…,S11均小于0,S12,S13,…均大于0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sin(45°-α)=-$\frac{2}{3}$,且45°<α<90°,求sinα=$\frac{\sqrt{10}+2\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简$\frac{sinα+sin2α}{2cos2α+2si{n}^{2}α+cosα}$-tanα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=$\sqrt{2}$+$\sqrt{3}$,M={x|x≤$\sqrt{10}$},给出下列关系:①a⊆M②M?{a}③{a}∈M④{∅}∈{a}⑤2a∉M,其中正确的关系式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中定义域为R的是(  )
A.f(x)=x2+2x-7B.f(x)=$\frac{3x+5}{|x-2|}$C.f(x)=$\sqrt{x}$-1D.f(x)=-4x+1(x≥0)

查看答案和解析>>

同步练习册答案