精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为F,过F的直线交抛物线C两点.

(Ⅰ)当时,求的值;

(Ⅱ)过点A作抛物线准线的垂线,垂足为E,过点BEF的垂线,交抛物线于另一点D,求面积的最小值.

【答案】(Ⅰ);(Ⅱ)16.

【解析】

(Ⅰ)求出焦点坐标,设出方程,联立方程,结合韦达定理可求的值;

(Ⅱ)先求出直线的方程,结合弦长公式求出,利用点到直线的距离求出的高,表示出的面积,结合基本不等式可得最小值.

(Ⅰ)由题意知,设直线AB的方程为

联立消去x

由根与系数的关系得.当时,

(Ⅱ)设,则

由(Ⅰ)知,所以

因为,所以

所以直线BD的方程为,即

联立方程组得消去x

所以

所以

设点ABD的距离为d,则

所以

当且仅当时等号成立,所以面积的最小值为16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知为椭圆的上顶点,P为椭圆E上异于上、下顶点的一个动点.当点P的横坐标为时,

1)求椭圆E的标准方程;

2)设Mx轴的正半轴上的一个动点.

①若点P在第一象限内,且以AP为直径的圆恰好与x轴相切于点M,求AP的长.

②若,是否存在点N,满足,且AN的中点恰好在椭圆E上?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面多边形中,AE=ED,AB=BD,且,现沿直线,将折起,得到四棱锥.

(1)求证: ;

(2)若,求PD与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆的右顶点到直线的距离为3.

1)求椭圆的方程;

2)过点的直线与椭圆交于两点,求的面积的最大值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(其中为自然对数的底数)

1)当时,是否存在唯一的的值,使得?并说明理由;

2)若存在,使得对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)若点在直线上,且,求直线的斜率;

2)若,求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎期间某商场开通三种平台销售商品,收集一月内的数据如图1;为了解消费者对各平台销售方式的满意程度,该商场用分层抽样的方法抽取4%的顾客进行满意度调查,得到的数据如图2.下列说法错误的是(

A.样本容量为240

B.若样本中对平台三满意的人数为40,则

C.总体中对平台二满意的消费者人数约为300

D.样本中对平台一满意的人数为24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若直线是曲线的一条切线,求k的值;

2)当时,直线与曲线无交点,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】{an}是各项都为整数的等差数列,其前n项和为是等比数列,且.

1)求数列的通项公式;

2)设cnlog2b1+log2b2+log2b3++log2bn .

i)求Tn

ii)求证:2.

查看答案和解析>>

同步练习册答案