已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(Ⅰ)若函数f(x)在x=-2处有极值,求f(x)的表达式;
(Ⅱ)若函数y=f(x)在区间[-2,1]上单调递增,求实数b的取值范围.
(1)f(x)=x3+2x2-4x+5(2)b≥0
(Ⅰ )由f(x)=x3+ax2+bx+c,求导数得f′(x)=3x2+2ax+b.
过y=f(x)上的点P(1,f(1))的切线方程为:y-f(1)=f′(1)(x-1),
即y-(a+b+c+1)=(3+2a+b)(x-1).
而过y=f(x)上的点P(1,f(1)) 的切线方程为y=3x+1,
故即
∵f(x)在x=-2处有极值,故f′(-2)=0,∴-4a+b=-12,③
由①②③得a=2,b=-4,c=5.
∴f(x)=x3+2x2-4x+5.
(Ⅱ )解:y=f(x)在[-2,1]上单调递增,又f′(x)=3x2+2ax+b,由①知2a+b=0.
依题意f′(x)在[-2,1]上恒有f′(x)≥0,即3x2-bx+b≥0.
,可得b(x-1)≤3x2.
当x=1时,不等式显然成立.
当x≠1时,x-1<0,∴b≥.
∵=3(x-1)++6≤-6+6=0 ∴b≥0
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022
已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com