【题目】设
,函数
.
(1)若
,求函数
在区间
上的最大值;
(2)若
,写出函数
的单调区间(写出必要的过程,不必证明);
(3)若存在
,使得关于
的方程
有三个不相等的实数解,求实数
的取值范围.
【答案】(1)
;(2)在
递增,
递减,
递增;(3)
.
【解析】
(1)当
时,化简函数的解析式,作出函数的图象,即可求解;
(2)求出函数的解析式,结合二次函数的性质,分类讨论,即可求解;
(3)当
时,运用函数的单调性,结合函数的最值,即可求解.
(1)由题意,当
时,函数![]()
作出函数的图象,如图所示,
可得函数
在区间
上为单调递增函数,
所以当
,函数
取得最大值,此时最大值为
.
![]()
(2)由函数![]()
①当
时,
,
因为
,所以
,所以函数
在
上单调递增;
②当
时,
,
因为
,所以
,
所以函数
在
递增,
递减;
综上可得,函数
在
递增,
递减,
递增.
(3)由(2)知,当
时,函数
在
,
递增,
递减,当且仅当
时,关于
的方程
有三个不相等的实数解,
即
,
令
,则函数
在
上是增函数,故
,
所以
,
即实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名
观众进行调查,其中有
名男观众和
名女观众,将这
名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在
分钟以上(包括
分钟)的称为“朗读爱好者”,收视时间在
分钟以下(不包括
分钟)的称为“非朗读爱好者”.
![]()
(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取
名,再从这
名观众中任选
名,求至少选到
名“朗读爱好者”的概率;
(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近
个月广告投入量
(单位:万元)和收益
(单位:万元)的数据如下表:
月份 |
|
|
|
|
|
|
广告投入量 |
|
|
|
|
|
|
收益 |
|
|
|
|
|
|
他们分别用两种模型①
,②
分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
|
|
|
|
|
|
|
|
![]()
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于
的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量
时,该模型收益的预报值是多少?
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出了根据我国2012年~2018年水果人均占有量
(单位:
)和年份代码
绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码
分别为1~7).
![]()
(1)根据散点图分析
与
之间的相关关系;
(2)根据散点图相应数据计算得
,求
关于
的线性回归方程;
(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)
附:回归方程
中斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市要建造一个边长为
的正方形市民休闲公园
,将其中的区域
开挖成一个池塘,如图建立平面直角坐标系后,点
的坐标为
,曲线
是函数
图像的一部分,过对边
上一点
的区域
内作一次函数
的图像,与线段
交于点
(点
不与点
重合),且线段
与曲线
有且只有一个公共点
,四边形
为绿化风景区.
![]()
(1)写出函数关系式
;
(2)设点
的横坐标为
,将四边形
的面积
表示成关于
的函数
,并求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定两个命题,p:对任意实数x都有x2+ax+1≥0恒成立;q:幂函数y=xa-1在(0,+∞)内单调递减;如果p与q中有且仅有一个为真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
(公差不为零)和等差数列
,如果关于
的实系数方程
有实数解,那么以下九个方程
(
)中,无实数解的方程最多有( )
A.3个B.4个C.5个D.6个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com