精英家教网 > 高中数学 > 题目详情
已知m∈R,设命题p:在平面直角坐标系xOy中,方程
x2
m+2
+
y2
9-m
=1
表示双曲线;命题q:关于x的方程x2-3mx+2m2+1=0的两个实根均大于1. 求使“p且q”为假命题,“p或q”为真命题的实数m的取值范围.
分析:先对两个条件化简,求出各自成立时参数所满足的范围,再根据“p或q”为真,p且q”为假判断出两命题的真假情况,然后求出实数m的取值范围.
解答:解:命题p为真命题?(m+2)(9-m)<0?m<-2或m>9,
设方程x2-3mx+2m2+1=0的两个实根分别为x1,x2,则
命题q为真命题?
△=(3m)2-4(2m2+1)≥0
x1+x2>2
(x1-1)(x2-1)>0
?m≥2,
∵p且q为假命题,p或q为真命题∴p与q一真一假,
∴当p真q假时,解得m<-2
当p假q真时,同理可得2≤m≤9
综上所述,m的取值范围是(-∞,-2)∪[2,9].
点评:本题考查命题的真假判断与应用,解题的关键是对两个命题时行化简,以及正确理解“p或q”为真,p且q”为假的意义.本题易因为对此关系判断不准出错,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m∈R,设命题P:-3≤m-5≤3;命题Q:函数f(x)=3x2+2mx+m+
43
有两个不同的零点.求使命题“P或Q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设命题p:在平面直角坐标系xoy中,方程
x2
m+2
+
y2
3-m
=1表示的曲线为双曲线;命题q:函数f(x)=x3+mx2+(m+
4
3
)x+6
在(-∞,+∞)上存在极值.求使“p且q”为真命题时的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设命题P:不等式|x|+|x-1|>m的解集是R,命题Q:函数f(x)=log2(x2+2x-m)的定义域是R.如果P或Q为真命题,P且Q为假命题,求m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,设命题P:函数f(x)=3x2+2mx+m+
43
有两个不同的零点;命题Q:函数 y=(m2-3)x是增函数.
(1)若命题P为真,求实数m的取值范围;
(2)求使命题“P或Q”为真命题的实数m的取值范围.

查看答案和解析>>

同步练习册答案