精英家教网 > 高中数学 > 题目详情
已知直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(t是参数),圆C的极坐标方程为ρ=2cos(θ+
π
4
).
(Ⅰ)求圆心C的直角坐标;
(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.
考点:参数方程化成普通方程,简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(I)由ρ=2cos(θ+
π
4
)
,展开ρ2=2×
2
2
(cosθ-sinθ)
,化为x2+y2=
2
x-
2
y
,配方即可得出圆心坐标.
(II)由直线l上的点向圆C引切线的切线长=
(
2
2
t-
2
2
)2+(
2
2
t+
2
2
+4
2
)2-1
,再利用二次函数的单调性即可得出.
解答: 解:(I)由ρ=2cos(θ+
π
4
)
,∴ρ2=2×
2
2
(cosθ-sinθ)
,化为x2+y2=
2
x-
2
y

配方为(x-
2
2
)2+(y+
2
2
)2
=1,圆心坐标为(
2
2
,-
2
2
)

(II)由直线l上的点向圆C引切线的切线长=
(
2
2
t-
2
2
)2+(
2
2
t+
2
2
+4
2
)2-1
=
(t+4)2+24
≥2
6

∴切线长的最小值为2
6
点评:本题考查了极坐标化为直角坐标方程、圆的标准方程、圆的切线长、勾股定理,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn是正项数列{an}的前n项和,且an和Sn满足:4Sn=(an+1)2(n=1,2,3,…),则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b均为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0互相平行,则2a+3b的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,则当x>0时,f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为(  )
A、-
4
7
B、
4
7
C、
1
8
D、-
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足以下两条规则:
①在区间D上的任何取值都有意义;
②对于区间D上的任意n个值x1,x2,x3,…,xn,总满足
f(x1)+f(x2)+f(x3)+…+f(xn)
n
≥f(
x1+x2+x3+…+xn
n
).
我们称函数f(x)为区间D上的凹函数.那么,下列函数中是区间[0,
π
2
]上的凹函数的个数是(  )
(1)f(x)=sin x;(2)f(x)=-cos x;(3)f(x)=tan(x+
π
4
);(4)f(x)=
3
sin(2x-
π
3
).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若正实数a,b,c满足a+b+c=1,则
4
a+1
+
1
b+c
的最小值为(  )
A、
3
2
B、2
C、
9
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={(x,y)|y=x2+mx+2},B={(x,y)|x-y+1=0,0≤x≤2}.若A∩B≠∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若l,n是两条互不相同的空间直线,α,β是两个不重合的平面,则下列命题中为真命题的是
 
(填所有正确答案的序号).
①若α∥β,l?α,n?β,则l∥n;        
②若l⊥α,n∥α,则l⊥n;
③若α⊥β,l⊥β,则l∥α;              
④若l⊥α,l∥β,则α⊥β.

查看答案和解析>>

同步练习册答案