精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)=0的两根一个大于-3,另一个小于-3,求a的取值范围;
(2)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式.
分析:(1)依据不等式f(x)>-2x的解集为(1,3),可设函数f(x)-2x的解析式为(x)+2x=a(x-1)(x-3),利用方程f(x)=0的两根一个大于-3,另一个小于-3,可建立不等式,即可求a的取值范围;
(2)利用f(x)+6a=0有两个相等的实数根,通过△=0求出a的值,最后代入f(x)即可得出答案.
解答:解:(1)∵f(x)>-2x的解集为(1,3),
∴可设f(x)+2x=a(x-1)(x-3),且a<0,
因而f(x)=a(x-1)(x-3)-2x=ax2-(4a+2)x+3a
∵方程f(x)=0的两根一个大于-3,另一个小于-3,
a<0
f(-3)>0
,∴-
1
4
<a<0;
(2)∵方程f(x)+6a=0有两个相等实根
∴ax2-(4a+2)x+9a=0有两个相等实根.
∴[-(4a+2)]2-36a2=0,
∴5a2-4a-1=0
∴a=1或a=-
1
5

∵a<0,∴a=-
1
5

∴f(x)=-
1
5
x2-
6
5
x-
3
5
点评:本题主要考查用待定系数法求函数解析式的问题,考查方程根问题,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案