精英家教网 > 高中数学 > 题目详情
(2012•黄浦区一模)要测定古物的年代,常用碳的放射性同位素14C的衰减来测定:在动植物的体内都含有微量的14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C含量的衰变经过5570年(14C的半衰期),它的残余量只有原始量的一半.若14C的原始含量为a,则经过x年后的残余量a′与a之间满足a′=a•e-kx
(1)求实数k的值;
(2)测得湖南长沙马王堆汉墓女尸中14C的残余量约占原始含量的76.7%,试推算马王堆古墓的年代(精确到100年).
分析:(1)根据a′=a•e-kx,原有的14C含量的衰变经过5570年(14C的半衰期),它的残余量只有原始量的一半,建立等式,可求实数k的值;
(2)古墓中女尸14C的残余量约占原始含量的76.7%,建立方程,可推算马王堆古墓的年代.
解答:解:(1)由题意可知,当x=5570时,
a′
a
=
1
2

∵a′=a•e-kx,∴
1
2
=e-5570k
∴k=
ln2
5570

(2)∵古墓中女尸14C的残余量约占原始含量的76.7%,
a′
a
=0.767
,即0.767=e-
ln2
5570
x

解得x≈2132.
∴由此可推测古墓约是2100多年前的遗址.
点评:本题考查函数模型的运用,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区一模)若0<α<
π
2
<β<π,sinα=
3
5
,sin(α+β)=
5
13
,则cosβ=
-
33
65
-
33
65

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知四棱锥S-ABCD的底面ABCD是直角梯形,AB∥CD,BC⊥AB,侧面SAB为正三角形,AB=BC=4,CD=SD=2.如图所示.
(1)证明:SD⊥平面SAB;
(2)求四棱锥S-ABCD的体积VS-ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知函数y=f(x)是R上的偶函数,当x≥0时,有f(x)=
2
π
|x-π| (x>
π
2
)
sinx  (0≤x≤
π
2
)
关于x的方程f(x)=m(m∈R)有且仅有四个不同的实数根,若α是四个根中的最大根,则sin(
π
3
+α)=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知两点A(-1,0)、B(1,0),点P(x,y)是直角坐标平面上的动点,若将点P的横坐标保持不变、纵坐标扩大到
2
倍后得到点Q(x,
2y
)满足
AQ
BQ
=1

(1)求动点P所在曲线C的轨迹方程;
(2)过点B作斜率为-
2
2
的直线i交曲线C于M、N两点,且满足
OM
+
ON
+
OH
=
0
(O为坐标原点),试判断点H是否在曲线C上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知a<b,且a2-a-6=0,b2-b-6=0,数列{an}、{bn}满足a1=1,a2=-6a,an+1=6an-9an-1(n≥2,n∈N*),bn=an+1-ban(n∈N*).
(1)求证数列{bn}是等比数列;
(2)已知数列{cn}满足cn=
an3n
(n∈N*),试建立数列{cn}的递推公式(要求不含an或bn);
(3)若数列{an}的前n项和为Sn,求Sn

查看答案和解析>>

同步练习册答案