【题目】给出下列函数:①f(x)=
,g(x)=x+1;②f(x)=|x|,g(x)=
;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函数的是( )
A.①②③
B.①③
C.②③
D.②
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,已知曲线
的极坐标方程为
,将曲线
:
(
为参数),经过伸缩变换
后得到曲线
.
(1)求曲线
的参数方程;
(2)若点
的曲线
上运动,试求出
到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017锦州质量检测(二)】如图,在四棱锥
中,底面
为直角梯形,
,
,平面
底面
,
为
的中点,
是棱
上的点,
,
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)若三棱锥
的体积是四棱锥
体积的
,设
,试确定
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求实数a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,棱长为1 ,点
为线段
上的动点(包含线段端点),则下列结论正确的______.
①当
时,
平面
;
②当
时,
平面
;
③
的最大值为
;
④
的最小值为
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣2x.
(1)求f(x)的解析式,并画出的f(x)图象; ![]()
(2)设g(x)=f(x)﹣k,利用图象讨论:当实数k为何值时,函数g(x)有一个零点?二个零点?三个零点?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com