精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求实数a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求实数a的取值范围.

【答案】
(1)解:

g(x)=a(x﹣2a)(x+a﹣2)=0得x=2a,x=2﹣a

∵{x|f(x)g(x)=0}={1,2},

经检验a=1符合题意,∴a=1


(2)解法1:设由于{x|f(x)<0或g(x)<0}=R

当a>0时,x→+∞总有f(x)>0,g(x)>0不符合题意

当a<0时,由f(x),g(x)的图象可得f(x)<0或g(x)<0成立则

解法2:设由于{x|f(x)<0或g(x)<0}=R

当a>0时,x→+∞总有f(x)>0,g(x)>0不符合题意

当a<0时,若f(x)<0,则

若g(x)<0,则x∈(2﹣a,+∞)∪(﹣∞,2a)

综上


【解析】(1)通过方程的根,结合已知条件求解即可.(2)解法1:利用{x|f(x)<0或g(x)<0}=R,通过当a>0时,当a<0时,结合函数的图象验证求解即可.解法2:由于{x|f(x)<0或g(x)<0}=R,验证当a>0时,不符合题意,当a<0时,讨论若f(x)<0,若g(x)<0,推出结果即可.
【考点精析】本题主要考查了函数的值的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数 ,且图象上一个最高点为最近的一个最低点的坐标为 .

(Ⅰ)求函数的解析式;

(Ⅱ)设为常数,判断方程在区间上的解的个数;

(Ⅲ)在锐角中,若,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设偶函数f(x)的定义域为[﹣4,0)∪(0,4],若当x∈(0,4]时,f(x)=log2x,
(1)求出函数在定义域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.
(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;
(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017衡阳第二次联考已知四棱锥中,底面为矩形, 底面 上一点, 的中点.

(1)在图中作出平面的交点,并指出点所在位置(不要求给出理由);

(2)求平面将四棱锥分成上下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列函数:①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函数的是(
A.①②③
B.①③
C.②③
D.②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:

月份

1月份

2月份

3月份

4月份

5月份

6月份

收入x

12.3

14.5

15.0

17.0

19.8

20.6

支出Y

5.63

5.75

5.82

5.89

6.11

6.18

根据统计资料,则(  )
A.月收入的中位数是15,x与y有正线性相关关系
B.月收入的中位数是17,x与y有负线性相关关系
C.月收入的中位数是16,x与y有正线性相关关系
D.月收入的中位数是16,x与y有负线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)在(0,+∞)内是减函数,又有f(3)=0,则f(x)>0的解集为 , xf(x)<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的奇函数f(x)满足当x>0时,f(x)=|2x﹣2|,

(1)求函数f(x)的解析式;
(2)在图中的坐标系中作出函数y=f(x)的图象,并找出函数的单调区间;
(3)若集合{x|f(x)=a}恰有两个元素,结合函数f(x)的图象求实数a应满足的条件.

查看答案和解析>>

同步练习册答案