【题目】已知向量
,函数
,且
图象上一个最高点为
与
最近的一个最低点的坐标为
.
(Ⅰ)求函数
的解析式;
(Ⅱ)设
为常数,判断方程
在区间
上的解的个数;
(Ⅲ)在锐角
中,若
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)当
时,求函数
的极小值;
(Ⅱ)设定义在
上的函数
在点
处的切线方程为
:
,当
时,若
在
内恒成立,则称
为函数
的“转点”.当
时,试问函数
是否存在“转点”?若存在,求出转点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(cosx,sinx),
=(
sinx,sinx),x∈R设函数f(x)=
﹣ ![]()
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[0,
]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长为2的线段AB中点为C,当线段AB的两个端点A和B分别在x轴和y轴上运动时,C点的轨迹为曲线C1;
(1)求曲线C1的方程;
(2)直线
ax+by=1与曲线C1相交于C、D两点(a,b是实数),且△COD是直角三角形(O是坐标原点),求点P(a,b)与点(0,1)之间距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,已知曲线
的极坐标方程为
,将曲线
:
(
为参数),经过伸缩变换
后得到曲线
.
(1)求曲线
的参数方程;
(2)若点
的曲线
上运动,试求出
到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司欲制作容积为16米3 , 高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.
(1)试用x表示y;
(2)求y的最小值及此时该容器的底面边长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,A,B的坐标分别是
,点G是△ABC的重心,y轴上一点M满足GM∥AB,且|MC|=|MB|. (Ⅰ)求△ABC的顶点C的轨迹E的方程;
(Ⅱ)直线l:y=kx+m与轨迹E相交于P,Q两点,若在轨迹E上存在点R,使四边形OPRQ为平行四边形(其中O为坐标原点),求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求实数a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com