精英家教网 > 高中数学 > 题目详情

【题目】某公司欲制作容积为16米3 , 高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.
(1)试用x表示y;
(2)求y的最小值及此时该容器的底面边长.

【答案】
解:(1)由容器底面一边的长为x米,设宽为zm,
则xz1=16,即xz=16,即z=
则该容器的造价y=1000xz+500(x+x+z+z)
=16000+1000(x+z)=16000+1000(x+),x>0;
(2)由16000+1000(x+
≥16000+1000×2
=16000+8000=24000.
(当且仅当x=z=4时,等号成立)
故该容器的最低总价是24000元,
此时该容器的底面边长为4m.
【解析】(1)设长方体容器的长为xm,宽为zm;从而可得xz=16,从而写出该容器的造价为y=1000xz+500(x+x+z+z);
(2)利用基本不等式,可得x+≥2 , 即可得到所求的最值和对应的x的值.
【考点精析】关于本题考查的基本不等式在最值问题中的应用,需要了解用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC中,若cos(2B+C)+2sinAsinB=0,则△ABC中一定是(
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求证:AC⊥BC1
(3)求直线AB1与平面BB1C1C所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数 ,且图象上一个最高点为最近的一个最低点的坐标为 .

(Ⅰ)求函数的解析式;

(Ⅱ)设为常数,判断方程在区间上的解的个数;

(Ⅲ)在锐角中,若,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分16分)第1小题5分,第2小题5分,第3小题6分.

已知函数,其中为常数,且

(1) 若是奇函数,求的取值集合

(2) 当 时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合

(3) 对于问题(1)(2)中的 ,当时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,集合M={x|f(x)=0}={x1 , x2 , x3 , x4 , x5}N* , 设c1≥c2≥c3 , 则c1﹣c3=(
A.6
B.8
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设偶函数f(x)的定义域为[﹣4,0)∪(0,4],若当x∈(0,4]时,f(x)=log2x,
(1)求出函数在定义域[﹣4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:

月份

1月份

2月份

3月份

4月份

5月份

6月份

收入x

12.3

14.5

15.0

17.0

19.8

20.6

支出Y

5.63

5.75

5.82

5.89

6.11

6.18

根据统计资料,则(  )
A.月收入的中位数是15,x与y有正线性相关关系
B.月收入的中位数是17,x与y有负线性相关关系
C.月收入的中位数是16,x与y有正线性相关关系
D.月收入的中位数是16,x与y有负线性相关关系

查看答案和解析>>

同步练习册答案