精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求证:AC⊥BC1
(3)求直线AB1与平面BB1C1C所成的角的正切值.

【答案】
(1)解:如图:

设BC1∩B1C=O,则O为BC1的中点,连接OD,

∵D为AB的中点,∴OD∥AC1

又∵OD平面CDB1,AC1平面CDB1

∴AC1∥平面CDB1


(2)解:∵AC2+BC2=AB2,∴AC⊥BC.

又∵C1C∥AA1,AA1⊥底面ABC,∴C1C⊥底面ABC,∴AC⊥CC1

又BC∩CC1=C,∴AC⊥平面BCC1B1

而BC1平面BCC1B1,∴AC⊥BC1


(3)解:由(2)得AC⊥平面B1BCC1

∴直线B1C是斜线AB1在平面B1BCC1上的射影,

∴∠AB1C是直线AB1与平面B1BCC1所成的角,

在RT△AB1C中,B1C=4 ,AC=3,

∴tan∠AB1C= =

直线AB1与平面BB1C1C所成的角的正切值为


【解析】(1)设BC1∩B1C=O,由三角形的中位线性质可得OD∥AC1 , 从而利用线面平行的判定定理证明AC1∥平面CDB1 , (2)利用勾股定理证明AC⊥BC,证明C1C⊥底面ABC,可得AC⊥CC1 , 由线面垂直的判定定理证得AC⊥平面BCC1B1 , 从而证得AC⊥BC1 . (3)得到∠AB1C是直线AB1与平面B1BCC1所成的角,解三角形即可.
【考点精析】解答此题的关键在于理解空间中直线与直线之间的位置关系的相关知识,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点,以及对直线与平面平行的判定的理解,了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点F的直线交该抛物线于AB两点,O为坐标原点.若|AF|=3,则△AOB的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的奇函数f(x)满足:当x>0时,f(x)=lnx,则函数g(x)=f(x)﹣sin4x的零点的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx,sinx), =( sinx,sinx),x∈R设函数f(x)=
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线 与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长为2的线段AB中点为C,当线段AB的两个端点A和B分别在x轴和y轴上运动时,C点的轨迹为曲线C1
(1)求曲线C1的方程;
(2)直线 ax+by=1与曲线C1相交于C、D两点(a,b是实数),且△COD是直角三角形(O是坐标原点),求点P(a,b)与点(0,1)之间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求证:过点有三条直线与曲线相切;

(Ⅱ)当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司欲制作容积为16米3 , 高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.
(1)试用x表示y;
(2)求y的最小值及此时该容器的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个总体中含有4个个体,从中抽取一个容量为2的样本,说明为什么在抽取过程中每个个体被抽取的概率都相等

查看答案和解析>>

同步练习册答案