精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的奇函数f(x)满足:当x>0时,f(x)=lnx,则函数g(x)=f(x)﹣sin4x的零点的个数为

【答案】7
【解析】解:函数f(x)=sin4x是奇函数,且它的周期为 =
∵g(x)=f(x)﹣sin4x=0,
∴函数g(x)=f(x)﹣sin4x的零点的个数为
相当于f(x)=sin4x的零点个数,
即f(x)与sin4x的交点个数,
∴画出二者图象,由数形结合,
可知,在(﹣∞,0)有3个交点,0处有一个交点,(0,+∞)有3个交点,
故共有7个交点.
∴函数g(x)=f(x)﹣sin4x的零点的个数为7个,
所以答案是:7.

【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设对于任意实数x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式:|x﹣3|﹣2x≤2m﹣12.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.

(Ⅰ)求证:圆心O在直线AD上;

(Ⅱ)求证:点C是线段GD的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,若cos(2B+C)+2sinAsinB=0,则△ABC中一定是(
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 点(n, )在直线y= x+ 上. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和为Tn , 并求使不等式Tn 对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】能构成映射,下列说法正确的有 ( )

(1)A中的任一元素在B中必须有像且唯一;

(2)A中的多个元素可以在B中有相同的像;

(3)B中的多个元素可以在A中有相同的原像;

(4)像的集合就是集合B.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为落实《课标》所倡导的课程理念,切实提高学生的综合素质,某校高二年级开设“趣味数学”、“趣味物理”、“趣味化学”3门任意选修课程,供年级300位文科生自由选择2门(不可多选或少选),选课情况如下表:

(Ⅰ)为了解学生选课情况,现采用分层抽样方法抽取了三科作业共50本,统计发现“趣味物理”有18本,试根据这一数据估计 的值;

(Ⅱ)为方便开课,学校要求 ,计算的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:AC1∥平面CDB1
(2)求证:AC⊥BC1
(3)求直线AB1与平面BB1C1C所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,集合M={x|f(x)=0}={x1 , x2 , x3 , x4 , x5}N* , 设c1≥c2≥c3 , 则c1﹣c3=(
A.6
B.8
C.2
D.4

查看答案和解析>>

同步练习册答案