精英家教网 > 高中数学 > 题目详情
若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…lna20=
 
考点:等比数列的性质,对数的运算性质
专题:等差数列与等比数列
分析:直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.
解答: 解:∵数列{an}为等比数列,且a10a11+a9a12=2e5
∴a10a11+a9a12=2a10a11=2e5
则a10a11=e5
∴lna1+lna2+…lna20=ln(a1a2a20)=ln(a10a11)10
=ln(e510=lne50=50.
故答案为:50.
点评:本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:
①f(x)=sinxcosx,
②f(x)=
2
sin2x+2,
③f(x)=2sin(x+
π
4
),
④f(x)=sinx-
3
cosx,
其中属于“同簇函数”的是(  )
A、①②B、①④C、②③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为(  )
A、{1,3}
B、{-3,-1,1,3}
C、{2-
7
,1,3}
D、{-2-
7
,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=3an+1.
(Ⅰ)证明{an+
1
2
}是等比数列,并求{an}的通项公式;
(Ⅱ)证明:
1
a1
+
1
a2
+…+
1
an
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位同学从A、B、C、D共4所高校中,任选两所参加自主招生考试(并且只能选两所高校),但同学甲特别喜欢A高校,他除选A高校外,再在余下的3所中随机选1所;同学乙对4所高校没有偏爱,在4所高校中随机选2所.
(1)求乙同学选中D高校的概率;
(2)求甲、乙两名同学恰有一人选中D高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx+
x-1
x+1
,其中a为常数.
(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

2014年“五一节”期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:
(Ⅰ)求a的值,并说明交警部门采用的是什么抽样方法?
(Ⅱ)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);
(Ⅲ)若该路段的车速达到或超过90km/h即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a-c=
6
6
b,sinB=
6
sinC,
(Ⅰ)求cosA的值;
(Ⅱ)求cos(2A-
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a3=7,前3项和S3=21,则数列{an}的公比为
 

查看答案和解析>>

同步练习册答案