精英家教网 > 高中数学 > 题目详情
(2009•浦东新区二模)某地消费券近日在上海引起领券“热潮”.甲、乙、丙三位市民顾客分别获得一些景区门票的折扣消费券,数量如表1.已知这些景区原价和折扣价如表2(单位:元).
(1)按照上述表格的行列次序分别写出这三位市民获得的折扣消费券数量矩阵A和三个景区的门票折扣后价格矩阵B;
(2)利用你所学的矩阵知识,计算三位市民各获得多少元折扣?
(3)计算在对这3位市民在该次促消活动中,景区与原来相比共损失多少元?
分析:(1)令第一行为甲从景区1,2,3获得的折扣消费券数量,令第二行为乙从景区1,2,3获得的折扣消费券数量,令第三行为丙从景区1,2,3获得的折扣消费券数量.即可写出A,.三个景区的门票折扣后价格矩阵B为1×3矩阵.
(2)令C=
034
201
210
,D=(20,30,40),计算D•C即可.
(3)根据(2),将三位市民各获得的折扣 相加即可.
解答:解:(1)A=
022
301
410
,B=(40,60,80).(4分)
(2)令C=
034
201
210
,D=(20,30,40),D•C=(20,30,40)
034
201
210
=(140,100,110),
(8分)即三位市民各获得140、100和110元折扣.(10分)
(3)140+100+110=350(元).(16分)
点评:本题考查矩阵的计算及应用,体现出了数学的实用价值.是基础题,也是好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•浦东新区一模)如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10
3
米,记∠BHE=θ.
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若sinθ+cosθ=
3
+1
2
,求此时管道的长度L;
(3)问:当θ取何值时,铺设管道的成本最低?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)已知数列{an}是等比数列,其前n项和为Sn,若S2=12,S3=a1-6,则
limn→∞
Sn
=
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)函数y=2sin2x的最小正周期为
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区二模)在△ABC中,A、B、C所对的边分别为a、b、c已知a=2
3
 , c=2
,且
.
sinCsinB0
0b-2c
cosA01
.
=0
,求△ABC的面积.

查看答案和解析>>

同步练习册答案