精英家教网 > 高中数学 > 题目详情
如图,已知四边形ABCD与CDEF均为正方形,平面ABCD⊥平面CDEF.
(Ⅰ)求证:ED⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的大小.
(Ⅰ)证明:因为平面ABCD⊥平面CDEF,且平面ABCD∩平面CDEF=CD,
又因为四边形CDEF为正方形,
所以ED⊥CD.
因为ED?平面CDEF,
所以ED⊥平面ABCD.…(4分)
(Ⅱ)以D为坐标原点,如图建立空间直角坐标系D-xyz.

则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),E(0,0,1).
所以平面BDE的法向量为
AC
=(-1,1,0)
.…(5分)
设平面BEC的法向量为
n
=(x,y,z).
因为
CB
=(1,0,0),
CE
=(0,-1,1)

所以
x=0
-y+z=0
x=0
y=z.

令z=1,则
n
=(0,1,1).…6分
所以cos<
AC
n
>=
AC
n
|
AC
||
n
|
=
1
2

所以二面角D-BE-C的大小为60°.…(8分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°.
(1)设PD的中点为M,求证:AM平面PBC;
(2)求PA与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1中,E为棱CC1的中点
(1)求证:D1B1⊥AE;
(2)求D1B1与平面ABE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知平行四边形ABCD中,∠BAD=60°,AB=6,AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG.
(I)求证:直线CE直线BF;
(II)若直线GE与平面ABCD所成角为
π
6

①求证:FG⊥平面ABCD:
②求二面B一EF一A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点.
(Ⅰ)求证:AN平面MEC;
(Ⅱ)在线段AM上是否存在点P,使二面角P-EC-D的大小为
π
6
?若存在,求出AP的长h;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图的多面体中,EF⊥平面AEB,AE⊥EB,ADEF,EFBC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(Ⅰ)求证:AB平面DEG;
(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ABCD中,错误的式子是(     ) 
A.B.
C.D.

查看答案和解析>>

同步练习册答案