精英家教网 > 高中数学 > 题目详情

【题目】(本题满分12分)

一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1234,现从盒子中随机抽取卡片.

(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;

(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.

【答案】(1)(2)

【解析】

古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点

1)由题意知本题是一个古典概型,试验包含的所有事件是任取三张卡片,三张卡片上的数字全部可能的结果,可以列举出,而满足条件的事件数字之和大于7的,可以从列举出的结果中看出.

2)列举出每次抽1张,连续抽取两张全部可能的基本结果,而满足条件的事件是两次抽取中至少一次抽到数字3,从前面列举出的结果中找出来.

解:(Ⅰ)A表示事件抽取3张卡片上的数字之和大于或等于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(123),(124),(134),(234),共4种,……………………………2

数字之和大于或等于7的是(124),(134),(234),共3种,……4

所以P(A)=. ……………6

(Ⅱ)B表示事件至少一次抽到2”

第一次抽1张,放回后再抽取1张的全部可能结果为:(11)(12)(13)(14)(21)(22)(23)(24)(31)(32)(33)(34)(41)(42)(43)(44),共16……………………………8

事件B包含的结果有(12)(21)(22)(23)(24)(32)(42),共7

………10

所以所求事件的概率为P(B)=. ……………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C﹣ABB1A1的体积等于4.

(1)求AA1的值;
(2)求C1到平面A1B1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=xlnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)对x≥1,f(x)≤m(x2﹣1)成立,求实数m的最小值;
(3)证明:1n .(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列各函数中,最小值等于2的函数是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为棱长的正方体, 为棱的中点.

(1)求三棱锥的体积;

(2)求证: 平面.

【答案】(1);(2)见解析.

【解析】试题分析:(1)高为ED,再根据锥体体积公式计算体积(2)连接于点,根据三角形中位线性质得,再根据线面平行判定定理得结论

试题解析:(1)体积

(2)连接于点,则的中位线,即

,得到 平面.

型】解答
束】
18

【题目】已知抛物线 的焦点为圆的圆心.

(1)求抛物线的标准方程;

(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)证明:数列{ }是等差数列;
(2)设bn=3n ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点 ,与抛物线的准线相交于不同的两点 ,且.

(1)求抛物线的方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足.证明直线过定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.

(1)求{an}的通项公式.

(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?

查看答案和解析>>

同步练习册答案