【题目】(本题满分12分)
一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
【答案】(1)(2)
【解析】
古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,主要考查的是另一个知识点
(1)由题意知本题是一个古典概型,试验包含的所有事件是任取三张卡片,三张卡片上的数字全部可能的结果,可以列举出,而满足条件的事件数字之和大于7的,可以从列举出的结果中看出.
(2)列举出每次抽1张,连续抽取两张全部可能的基本结果,而满足条件的事件是两次抽取中至少一次抽到数字3,从前面列举出的结果中找出来.
解:(Ⅰ)设A表示事件“抽取3张卡片上的数字之和大于或等于7”,任取三张卡片,三张卡片上的数字全部可能的结果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4种,……………………………2分
数字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3种,……4分
所以P(A)=. ……………6分
(Ⅱ)设B表示事件“至少一次抽到2”,
第一次抽1张,放回后再抽取1张的全部可能结果为:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16个 ……………………………8分
事件B包含的结果有(1、2)(2、1)(2、2)(2、3)(2、4)(3、2)(4、2),共7个
………10分
所以所求事件的概率为P(B)=. ……………12分
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C﹣ABB1A1的体积等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数f(x)=xlnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)对x≥1,f(x)≤m(x2﹣1)成立,求实数m的最小值;
(3)证明:1n .(n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为棱长的正方体, 为棱的中点.
(1)求三棱锥的体积;
(2)求证: 平面.
【答案】(1);(2)见解析.
【解析】试题分析:(1)高为ED,再根据锥体体积公式计算体积(2)连接交于点,根据三角形中位线性质得,再根据线面平行判定定理得结论
试题解析:(1)体积
(2)连接交于点,则为的中位线,即,
又面, 面,得到 平面.
【题型】解答题
【结束】
18
【题目】已知抛物线: 的焦点为圆的圆心.
(1)求抛物线的标准方程;
(2)若斜率的直线过抛物线的焦点与抛物线相交于两点,求弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)证明:数列{ }是等差数列;
(2)设bn=3n ,求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点, ,与抛物线的准线相交于不同的两点, ,且.
(1)求抛物线的方程;
(2)若不经过坐标原点的直线与抛物线相交于不同的两点, ,且满足.证明直线过定点,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求{an}的通项公式.
(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com