精英家教网 > 高中数学 > 题目详情
如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的条件下,求C1到平面PAC的距离.
分析:(1)先建立空间直角坐标系,求出各点的坐标,直接根据PC⊥AB对应的数量积为0即可求出点P的位置;
(2)先根据条件求出点P的坐标,再求出两个平面的法向量,代入向量的夹角计算公式即可求出结论;
(3)直接利用公式h=|
C1C
|•cos<
n
C1C
>计算即可.
解答:解:以A为原点,AB为X轴,过点A且与AB垂直的直线为Y轴,AA1为Z轴,建立空间直角坐标系A-XYZ;
则B(a,0,0),A1(0,0,a);C(
a
2
3
2
a,0),P(x,0,x);
(1)由
CP
AB
=0⇒(x-
a
2
,-
3
2
a,z)•(a,0,0)=0,
即(x-
a
2
)•a=0,x=
a
2

所以:P为AB的中点;
A1P
PB
=1时,PC⊥AB;
(2)当
A1P
PB
=
2
3
时,即
A 1P
=
2
3
PB

得(x,0,z-a)=
2
3
(a-x,0,-z)
3x=2a-2x
3(z-a)=-2z
x=
2
5
a
z=
3
5
a

所以:P(
2a
5
,0,
3a
5
).
设平面PAC的一个法向量
n
=(b,c,d)
n
AP
=0
n
AC
=0

(b,c,d)• (
2a
5
,0,
3a
5
)=0
(b,c,d)•(
a
2
3
a
2
,0)=0
2a 
5
•b+
3a
5
•d=0
a
2
•b+
3
a
2
•c=0

取b=3,则c=-
3
,d=-2.
n
=(3,-
3
,-2),
又平面ABC的一个法向量
m
=(0,0,1),
∴cos<
n
m
>=
n
m
|
n
|•|
m
|
=
-2
4×1
=-
1
2

∴二面角P-AC-B的大小180°-120°=60°.
(3)设C1到平面PAC的距离为h,
则h=|
C1C
|•cos<
n
C1C
>=
|
n
C1C
|
|
n
|
=
|(3,-
3
,-2)•(0,0,-a)|
4
=
a
2

故C1到平面PAC的距离为
a
2
点评:本题是对立体几何知识的综合考察,其中涉及到点到面的距离,二面角,线线垂直等知识,属于综合性很强的题目,要认真分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为线段A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高位5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为
13
13
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1,D是AC的中点,C1DC=600,则异面直线AB1与C1D所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)如图,已知正三棱柱ABC-A1B1C1的所有棱长均为a,截面AB1C和A1BC1相交于DE,则三棱锥B-B1DE的体积为
3
48
a3
3
48
a3

查看答案和解析>>

同步练习册答案