精英家教网 > 高中数学 > 题目详情
4.△ABC为锐角三角形,内角A,B,C的对边长分别为a,b,c,已知c=2,且sinC+sin(B-A)=2sin2A,则a的取值范围是$(\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{3}}}{3})$.

分析 由sinC=sin(B+A),sinC+sin(B-A)=2sin2A,可得2sinBcosA=4sinAcosA,解得sinB=2sinA,由正弦定理可得:b=2a,根据余弦定理可得a=$\sqrt{\frac{4}{5-4cosC}}$,结合C的范围,可求得:a∈($\frac{2\sqrt{5}}{5}$,2),又由余弦定理可得cosB=$\frac{{c}^{2}-3{a}^{2}}{2ac}$>0,结合a$<\frac{2\sqrt{3}}{3}$,即可解得a的范围.

解答 解:∵sinC=sin(B+A),sinC+sin(B-A)=2sin2A,
∴sin(A+B)+sin(B-A)=2sin2A,
∴2sinBcosA=4sinAcosA,
当cosA=0时,解得A=$\frac{π}{2}$(舍去),
当cosA≠0时,sinB=2sinA,
由正弦定理可得:b=2a,
由c=2,根据余弦定理可得:4=a2+4a2-4a2cosC,解得:a=$\sqrt{\frac{4}{5-4cosC}}$,
∵C∈(0,$\frac{π}{2}$),cosC∈(0,1),5-4cosC∈(1,5),解得:a∈($\frac{2\sqrt{5}}{5}$,2).
余弦定理可得:b2=a2+c2-2accosB,可得cosB=$\frac{{c}^{2}-3{a}^{2}}{2ac}$>0,
可得c$>\sqrt{3}a$,c=2,可得a$<\frac{2\sqrt{3}}{3}$.
综上a∈$(\frac{2\sqrt{5}}{5},\frac{2\sqrt{3}}{3})$.
故答案为:$(\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{3}}}{3})$.

点评 本题主要考查了两角和与差的正弦函数公式,正弦定理,余弦定理,余弦函数的图象和性质,熟练掌握相关公式及定理是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知n=$\frac{6}{π}$${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-2x)dx,则x(1-$\frac{2}{\sqrt{x}}$)n的展开式中的常数项为(  )
A.-60B.-50C.50D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\sqrt{12-4x-{x^2}}$的单调递增区间为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,2015]上具有性质 P.现给出如下命题:
①f(x)在[1,2015]上不可能为一次函数;
②函数f(x2)在[1,$\sqrt{2015}$]上具有性质P;
③对任意x1,x2,x3,x4∈[1,2015],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)];
④若f(x)在x=1008处取得最大值 2016,则f(x)=2016,x∈[1,2015].
其中真命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin(2ωx+$\frac{π}{6}$)$+\frac{1}{2}$(ω>0)的图象与直线$y=\frac{3}{2}$相切,相邻切点之间的距离为3π.
(1)求ω的值;
(2)设a是第一象限角,且f($\frac{3}{2}$a+$\frac{π}{2}$)=$\frac{23}{26}$,求$\frac{sin(a+\frac{π}{4})}{cos(π+2a)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足an>0,且an=$\frac{2{a}_{n+1}}{1-{{a}_{n+1}}^{2}}$(n∈N*).
(1)证明:an+1<$\frac{1}{2}$an(n∈N*);
(2)令bn=-an+12+anan+1(n∈N*),数列{bn}的前n项和为Tn,求证:Tn<$\frac{1}{3}$a12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,0)时f(x)=($\frac{1}{2}$)x,则 f(log28)等于(  )
A.3B.$\frac{1}{8}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.实数x,y,z满足x2+y2+z2=1,则xy-yz的最小值为(  )
A.-$\frac{1}{2}$B.-$\frac{2}{3}$C.-$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.三台机器人位于同一直线上(如图所示),它们所生产的零件必须逐一送到一个检验台上,经检验合格后,才能送到下一道工序继续加工,已知机器人M1的工作效率是机器人M2的2倍,机器人M2的工作效率是机器人M3的3倍,问检验台放何处最好?(即各机器人到检验台所走距离的总和最小)

查看答案和解析>>

同步练习册答案