精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\sqrt{12-4x-{x^2}}$的单调递增区间为[-2,2].

分析 函数f(x)=$\sqrt{12-4x-{x^2}}$的定义域为:[-6,2],令t=12-4x-x2,则y=$\sqrt{t}$,由复合函数单调性“同增异减”的原则,结合二次函数和幂函数的单调性,可得答案.

解答 解:由12-4x-x2≥0得:x∈[-6,2],
∴函数f(x)=$\sqrt{12-4x-{x^2}}$的定义域为:[-6,2],
令t=12-4x-x2,则y=$\sqrt{t}$,
∵y=$\sqrt{t}$为增函数,t=12-4x-x2在[-2,2]上为减函数,
故函数f(x)=$\sqrt{12-4x-{x^2}}$的单调递增区间为[-2,2],
故答案为:[-2,2]

点评 本题考查的知识点是复合函数的单调性,熟练掌握复合函数单调性“同增异减”的原则,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{x}{{x}^{2}+a}$(a>0)在[1,+∞)上的最大值为$\frac{\sqrt{3}}{3}$,则a的值为(  )
A.$\sqrt{3}$-1B.$\frac{3}{4}$C.$\frac{4}{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.命题p:关于x的不等式x2+(a-1)x+a2>0的解集为R,命题q:函数y=(2a2-a)x为增函数.若p∨q为真,¬q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.i为虚数单位,复数$\frac{-2-i}{1-i}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.其中女性有55名.图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40min的观众称为“体育迷”,已知“体育迷”中有10名女性.
(1)根据已知条件完成下面的2×2列表.
非体育迷体育迷总计
总计
(2)能否说在犯错误的概率不超过0.1的前提下,认为“体育迷”与性别有关?
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=|x-3|(x+1)的图象与直线y=m有3个不同的交点,则实数m的取值范围为0<m<4.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽豪州蒙城县一中高二上月考一数学试卷(解析版) 题型:选择题

等差数列的前项和为分别是,且,则等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC为锐角三角形,内角A,B,C的对边长分别为a,b,c,已知c=2,且sinC+sin(B-A)=2sin2A,则a的取值范围是$(\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知袋子中放有大小和形状相同的小球若干个,其中标号为0的小球2个,标号为1的小球2个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是$\frac{1}{3}$.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记“2≤a+b≤3”为事件A,求事件A的概率.

查看答案和解析>>

同步练习册答案