【题目】如图所示,曲线由部分椭圆:和部分抛物线:连接而成,与的公共点为,,其中所在椭圆的离心率为.
(Ⅰ)求,的值;
(Ⅱ)过点的直线与,分别交于点,(,,,中任意两点均不重合),若,求直线的方程.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)在抛物线方程中,令,求出,坐标,再由离心率的公式和之间的关系,求出;
(Ⅱ)由(Ⅰ)可求出横轴上方的椭圆方程,由题意可知:过点的直线存在斜率且不能为零,故设直线方程为,代入椭圆、抛物线方程中,求出,两点坐标,由向量垂直条件,可得等式,求出的值,进而求出直线的方程.
(Ⅰ)因为,所以,即,因此,代入椭圆方程中,得,由以及 ,可得,
所以;
(Ⅱ)由(Ⅰ)可求出横轴上方的椭圆方程为:,由题意可知:过点的直线存在斜率且不能为零,故设直线方程为,代入椭圆得:,故可得点的坐标为:,显然,同理将代入抛物线方程中,得,故可求得的坐标为:,
,,解得,符合,故直线的方程为:.
科目:高中数学 来源: 题型:
【题目】定义函数,(0,)为型函数,共中.
(1)若是型函数,求函数的值域;
(2)若是型函数,求函数极值点个数;
(3)若是型函数,在上有三点A、B、C横坐标分別为、、,其中<<,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一块直角三角形木板置于平面直角坐标系中,已知,点是三角形木板内一点,现因三角形木板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点的任一直线将三角形木板锯成.设直线的斜率为.
(Ⅰ)求点的坐标及直线的斜率的范围;
(Ⅱ)令的面积为,试求出的取值范围;
(Ⅲ)令(Ⅱ)中的取值范围为集合,若对恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,圆方程为,点,直线过点
(1)如图1,直线的斜率为,直线交圆于不同两点,求弦的长度;
(2)动点在圆上作圆周运动,线段的中点为点,求点的轨迹方程;
(3)在(1)中,如图2,过点作直线,交圆于不同两点,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,假命题的个数是( )
(1)若直线a在平面上,直线b不在平面上,则a,b是异面直线;
(2)若a,b是异面直线、则与a,b都垂直的直线有且只有一条
(3)若a,b是异面直线、若c,d与直线a,b都相交,则c,d也是异面直线
(4)设a,b是两条直线,若平面,,则平面.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面命题正确的是( )
A.“”是“”的 充 分不 必 要条件
B.命题“若,则”的 否 定 是“ 存 在,则”.
C.设,则“且”是“”的必要而不充分条件
D.设,则“”是“”的必要 不 充 分 条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左、右焦点分别为,,下顶点为,为坐标原点,点到直线的距离为,为等腰直角三角形.
(1)求椭圆的标准方程;
(2)直线与椭圆交于,两点,若直线与直线的斜率之和为,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com