精英家教网 > 高中数学 > 题目详情

【题目】如图所示,曲线由部分椭圆和部分抛物线连接而成,的公共点为,其中所在椭圆的离心率为.

(Ⅰ)求的值;

(Ⅱ)过点的直线分别交于点中任意两点均不重合),若,求直线的方程.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)在抛物线方程中,令,求出坐标,再由离心率的公式和之间的关系,求出

(Ⅱ)由(Ⅰ)可求出横轴上方的椭圆方程,由题意可知:过点的直线存在斜率且不能为零,故设直线方程为,代入椭圆、抛物线方程中,求出两点坐标,由向量垂直条件,可得等式,求出的值,进而求出直线的方程.

(Ⅰ)因为,所以,即,因此,代入椭圆方程中,得,由以及 ,可得

所以

(Ⅱ)由(Ⅰ)可求出横轴上方的椭圆方程为:,由题意可知:过点的直线存在斜率且不能为零,故设直线方程为,代入椭圆得:,故可得点的坐标为:,显然,同理将代入抛物线方程中,得,故可求得的坐标为:

,解得,符合,故直线的方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义函数(0,)为型函数,共中

(1)若型函数,求函数的值域;

(2)若型函数,求函数极值点个数;

(3)若型函数,在上有三点A、B、C横坐标分別为,其中,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一块直角三角形木板置于平面直角坐标系中,已知,点是三角形木板内一点,现因三角形木板中阴影部分受到损坏,要把损坏部分锯掉,可用经过点的任一直线将三角形木板锯成.设直线的斜率为.

(Ⅰ)求点的坐标及直线的斜率的范围;

(Ⅱ)令的面积为,试求出的取值范围;

(Ⅲ)令(Ⅱ)中的取值范围为集合,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆方程为,点,直线过点

1)如图1,直线的斜率为,直线交圆不同两点,求弦的长度;

2)动点在圆上作圆周运动,线段的中点为点,求点的轨迹方程;

3)在(1)中,如图2,过点作直线,交圆不同两点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,假命题的个数是(

1)若直线a在平面上,直线b不在平面上,则ab是异面直线;

2)若ab是异面直线、则与ab都垂直的直线有且只有一条

3)若ab是异面直线、若cd与直线ab都相交,则cd也是异面直线

4)设ab是两条直线,若平面,则平面.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面命题正确的是(

A.”是“”的 充 分不 必 要条件

B.命题“若,则”的 否 定 是“ 存 在,则”.

C.,则“”是“”的必要而不充分条件

D.,则“”是“”的必要 不 充 分 条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点为,点是椭圆上的动点,且不与重合,点满足.

(Ⅰ)求动点的轨迹方程;

(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为为坐标原点,点到直线的距离为为等腰直角三角形.

(1)求椭圆的标准方程;

(2)直线与椭圆交于两点,若直线与直线的斜率之和为,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案