精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,假命题的个数是(

1)若直线a在平面上,直线b不在平面上,则ab是异面直线;

2)若ab是异面直线、则与ab都垂直的直线有且只有一条

3)若ab是异面直线、若cd与直线ab都相交,则cd也是异面直线

4)设ab是两条直线,若平面,则平面.

A.1B.2C.3D.4

【答案】D

【解析】

1)中可能平行或异面;(2)中与都垂直的直线有无数条;(3)中可能相交;(4)中可能,由此可知个命题均为假命题,由此得到结果.

1)若,则可能平行或异面,(1)为假命题;

2)若为异面直线,作,则确定平面,作,则都垂直;由于面的垂线有无数条,则与都垂直的直线不止一条,(2)为假命题;

3)如下图所示,

与异面直线都相交,此时为相交直线,则(3)为假命题;

4)若,此时,(4)为假命题.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】目前用外卖网点餐的人越来越多.现对大众等餐所需时间情况进行随机调查,并将所得数据绘制成频率分布直方图(如图).其中等餐所需时间的范围是,样本数据分组为

(1)求直方图中的值;

(2)某同学在某外卖网点了一份披萨,试估计他等餐时间不多于小时的概率;

(3)现有名学生都分别通过外卖网进行了点餐,这名学生中等餐所需时间少于小时的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数mR

1)讨论fx)的单调性;

2)若m∈(-10),证明:对任意的x1x2[11-m]4fx1+x25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.

(1)求至少有一种新产品研发成功的概率;

(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个居民小区的居委会欲组织本小区的中学生,利用双休日去市郊的敬老院参加献爱心活动.两个校区每位同学的往返车费及服务老人的人数如下表:

小区

小区

往返车费

3元

5元

服务老人的人数

5人

3人

根据安排,去敬老院的往返总车费不能超过37元,且小区参加献爱心活动的同学比小区的同学至少多1人,则接受服务的老人最多有____人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,曲线由部分椭圆和部分抛物线连接而成,的公共点为,其中所在椭圆的离心率为.

(Ⅰ)求的值;

(Ⅱ)过点的直线分别交于点中任意两点均不重合),若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。年,某企业连续年累计研发投入搭亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )

A. 年至年研发投入占营收比增量相比年至年增量大

B. 年至年研发投入增量相比年至年增量小

C. 该企业连续年研发投入逐年增加

D. 该企业来连续年来研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点为,点是椭圆上的动点,且不与重合,点满足.

(Ⅰ)求动点的轨迹方程;

(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网约车的兴起丰富了民众出行的选择,为民众出行提供便利的同时也解决了很多劳动力的就业问题,据某著名网约车公司“滴滴打车”官网显示,截止目前,该公司已经累计解决退伍军人转业为兼职或专职司机三百多万人次,梁某即为此类网约车司机,据梁某自己统计某一天出车一次的总路程数可能的取值是20、22、24、26、28、,它们出现的概率依次是、t、

(1)求这一天中梁某一次行驶路程X的分布列,并求X的均值和方差;

(2)网约车计费细则如下:起步价为5元,行驶路程不超过时,租车费为5元,若行驶路程超过,则按每超出(不足也按计程)收费3元计费.依据以上条件,计算梁某一天中出车一次收入的均值和方差.

查看答案和解析>>

同步练习册答案