精英家教网 > 高中数学 > 题目详情
8.在四棱锥P-ABCD中,PB⊥底面ABCD,底面ABCD是边长为2的正方形,若直线PC与平面PDB所成的角为30°,则四棱锥P-ABCD的外接球的表面积为12π.

分析 由题意,连接AC交BD于H,则AC⊥平面PDB,连接PH,则∠CPH是直线PC与平面PDB所成的角,求出四棱锥P-ABCD的外接球的半径,即可求出四棱锥P-ABCD的外接球的表面积.

解答 解:由题意,连接AC交BD于H,则AC⊥平面PDB,
连接PH,则∠CPH是直线PC与平面PDB所成的角,即∠CPH=30°,
∵CH=$\sqrt{2}$,
∴PC=2$\sqrt{2}$,
∴PD=2$\sqrt{3}$,
∴四棱锥P-ABCD的外接球的半径为$\sqrt{3}$,
∴四棱锥P-ABCD的外接球的表面积为4πR2=12π.
故答案为:12π.

点评 本题考查四棱锥P-ABCD的外接球的表面积,考查线面角,考查学生的计算能力,确定四棱锥P-ABCD的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三棱柱ABC-A′B′C′的6个顶点都在球O的球面上,若$AB=1,AC=\sqrt{3}$,AB⊥AC,$AA'=2\sqrt{3}$,则球O的直径为(  )
A.2B.$\sqrt{13}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,圆柱形容器内盛有高度为6cm的水,若放入3个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则球的半径为(  )
A.4cmB.3cmC.2cmD.1 cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,等腰梯形ABCD中,AB∥CD,DE⊥AB于E,CF⊥AB于F,且AE=BF=EF=2,DE=CF=2.将△AED和△BFC分别沿DE,CF折起,使A,B两点重合,记为点M,得到一个四棱锥M-CDEF,点G,N,H分别是MC,MD,EF的中点.
(1)求证:GH∥平面DEM;
(2)求证:EM⊥CN;
(3)求直线GH与平面NFC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.-$\sqrt{14}$B.$\sqrt{14}$C.$\sqrt{26}$D.-$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\left\{\begin{array}{l}f(x-4)+1,x>4\\{x^2},0<x<4\end{array}\right.$,则f(2010)=(  )
A.4B.5C.506D.507

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题正确的是(  )
A.若x≥10,则x>10B.若x2≥25,则x≥5C.若x>y,则x2≥y2D.若x2≥y2,则|x|≥|y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:
赞成禁放不赞成禁放合计
老年人60140200
中青年人80120200
合计140260400
(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2>k00.0500.0250.010
k03.8415.0246.635

查看答案和解析>>

同步练习册答案