精英家教网 > 高中数学 > 题目详情
设函数f(x)=(x-a)2lnx,a∈R
(Ⅰ)若x=e为y=f(x)的极值点,求实数a;
(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.
分析:(I)利用极值点处的导数值为0,求出导函数,将x=e代入等于0,求出a,再将a的值代入检验.
(II)对x∈(0,3e]进行分区间讨论,求出f(x)的最大值,令最大值小于4e2,解不等式求出a的范围.
解答:解:(I)求导得f′(x)=2(x-a)lnx+
(x-a)2
x
=(x-a)(2lnx+1-
a
x
),
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,a=e或a=3e符合题意,
所以a=e,或a=3e
(II)①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立
②当1<x≤3e时,,由题意,首先有f(3e)=(3e-a)2ln3e≤4e2
解得3e-
2e
ln3e
≤a≤3e+
2e
ln3e

由(I)知f′(x)=2(x-a)lnx+
(x-a)2
x
=(x-a)(2lnx+1-
a
x
),
令h(x)=2lnx+1-
a
x
,则h(1)=1-a<0,
h(a)=2lna>0且h(3e)=2ln3e+1-
a
3e
≥2ln3e+1-
3e+
2e
ln3e
3e
=2(ln3e-
1
3
ln3e
)>0
又h(x)在(0,+∞)内单调递增,所以函数h(x)在在(0,+∞)内有唯一零点,记此零点为x0
则1<x0<3e,1<x0<a,从而,当x∈(0,x0)时,f′(x)>0,
当x∈(x0,a)时,f′(x)<0,
当x∈(a,+∞)时,f′(x)>0,即f(x)在(0,x0)内是增函数,
在(x0,a)内是减函数,在(a,+∞)内是增函数
所以要使得对任意的x∈(0,3e],恒有f(x)≤4e2成立只要有
f(x0)=(x0-a)2lnx04e2
f(3e)=(3e-a)2ln3e≤4e2

有h(x0)=2lnx0+1-
a
x0
=0得a=2x0lnx0+x0,将它代入f(x0)=(x0-a)2lnx04e2得4x02ln3x0≤4e2
又x0>1,注意到函数4x2ln3x在(1,+∞)上是增函数故1<x0≤e
再由a=2x0lnx0+x0,及函数2xlnx+x在(1,+∞)上是增函数,可得1<a≤3e
由f(3e)=(3e-a)2ln3e≤4e2解得3e-
2e
ln3e
≤a≤3e+
2e
ln3e

所以得3e-
2e
ln3e
≤a≤3e

综上,a的取值范围为3e-
2e
ln3e
≤a≤3e
点评:本题考查函数的极值的概念,导数运算法则,导数应用,不等式等基础知识,同时考查推理论证能力,分类讨论等分析问题和解决问题的能力,解题的关键是准确求出导数,利用二次求导和函数零点分区间计论导函数的符号,得到原函数的单调性,本题属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏、锡、常、镇四市高三调研数学试卷(一)(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州市高考数学一模试卷(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

同步练习册答案