精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
椭圆过点,其左、右焦点分别为,离心率是直线上的两个动点,且
(1)求椭圆的方程; (2)求的最小值;
(3)以为直径的圆是否过定点?请证明你的结论.
解:(1),且过点
 解得 椭圆方程为  .…………4分
设点
,  又
的最小值为.……………………… 7分
圆心的坐标为,半径.
的方程为,     
整理得:.  …………10分
,得.
过定点.………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆=1与椭圆=l(l>0)有 (    )
A.相等的焦距B.相同的离心率C.相同的准线D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分).
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C1=1(0<b<2)的离心率等于,抛物线C2x2=2py(p>0)的焦点在椭圆C1的顶点上.
(Ⅰ)求抛物线C2的方程;
(Ⅱ)若过M(-1,0)的直线l与抛物线C2交于EF两点,又过EF作抛物线C2的切线l1l2,当l1l2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知椭圆的左焦点是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线交椭圆于C、D两点,记直线AD、BC的斜率分别为
(1)当点D到两焦点的距离之和为4,直线轴时,求的值;
(2)求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点(x,y)在椭圆上,则的最小值为(  )
A.1 B.-1C.-D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆x2+(m+3)y2m(m>0)的离心率e,求m的值及椭圆的长轴和短轴的长及顶点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上一焦点与短轴两端点形成的三角形的面积为1,则  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案