精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AD=AC,AB= DE,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

【答案】
(1)证明:取CE的中点M,连结MF,MB,

∵F是CD的中点

∴MF∥DE且MF= DE

∵AB⊥平面ACD,DE⊥平面ACD

∴AB∥DE,MF∥AB

∵AB= DE,∴MF=AB

∴四边形ABMF是平行四边形

AF∥BM,AF平面BCE,BM平面BCE

∴AF∥平面BCE


(2)证明:∵AC=AD

∴AF⊥CD,又∵DE⊥平面ACD AF平面ACD∴AF⊥DE,又CD∩DE=D

∴AF⊥平面CDE

又∵BM∥AF,∴BM⊥平面CDE

∵BM平面BCE,∴平面BCE⊥平面CDE


【解析】(1)取CE的中点M,连结MF,MB,证明四边形ABMF是平行四边形得到AF∥BM,利用直线与平面平行的判定定理证明AF∥平面BCE.(2)证明AF⊥平面CDE,推出BM⊥平面CDE,通过平面与平面垂直的判定定理证明平面BCE⊥平面CDE.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行),还要掌握平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=4sinωxcos(ωx+ )+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点. (Ⅰ)求ω的值;
(Ⅱ)若函数f(x)在[x1 , x2]和[x3 , x4]上单调递增,在[x2 , x3]上单调递减,且满足等式x4﹣x3=x2﹣x1= (x3﹣x2),求x1、x4所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B﹣C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在Rt△ABC中,已知A(﹣2,0),直角顶点B(0,﹣2 ),点C在x轴上.
(Ⅰ)求Rt△ABC外接圆的方程;
(Ⅱ)求过点(﹣4,0)且与Rt△ABC外接圆相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC= AB,又PO⊥平面ABC,DA∥PO,DA=AO= PO.
(Ⅰ)求证:PD⊥平面COD;
(Ⅱ)求二面角B﹣DC﹣O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax﹣f(x)(a>0且a≠1),其中f(x)是定义在[a﹣6,2a]上的奇函数,若 ,则g(1)=(
A.0
B.﹣3
C.1
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论: ①函数 的值域是(0,+∞);
②直线2x+ay﹣1=0与直线(a﹣1)x﹣ay﹣1=0平行,则a=﹣1;
③过点A(1,2)且在坐标轴上的截距相等的直线的方程为x+y=3;
④若圆柱的底面直径与高都等于球的直径,则圆柱的侧面积等于球的表面积.
其中正确的结论序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x∈N, ∈N},则集合A用列举法表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1﹣m≤x≤2m+1},B=
(1)当m=2时,求A∩B,A∪B;
(2)若BA,求实数m的取值范围.

查看答案和解析>>

同步练习册答案