ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¡ÑM¾­¹ýµãF1£¨0£¬-c£©£¬F2£¨0£¬c£©£¬A£¨
3
c£¬0£©Èýµã£¬ÆäÖÐc£¾0£®
£¨1£©Çó¡ÑMµÄ±ê×¼·½³Ì£¨Óú¬cµÄʽ×Ó±íʾ£©£»
£¨2£©ÒÑÖªÍÖÔ²
y2
a2
+
x2
b2
=1(a£¾b£¾0)
£¨ÆäÖÐa2-b2=c2£©µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪD¡¢B£¬¡ÑMÓëxÖáµÄÁ½¸ö½»µã·Ö±ðΪA¡¢C£¬ÇÒAµãÔÚBµãÓҲ࣬CµãÔÚDµãÓҲ࣮
¢ÙÇóÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§£»
¢ÚÈôA¡¢B¡¢M¡¢O¡¢C¡¢D£¨OΪ×ø±êÔ­µã£©ÒÀ´Î¾ùÔÈ·Ö²¼ÔÚxÖáÉÏ£¬ÎÊÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãÊÇ·ñÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£¿ÈôÊÇ£¬ÇëÇó³öÕâÌõ¶¨Ö±Ïߵķ½³Ì£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Éè¡ÑMµÄ·½³ÌΪx2+y2+Dx+Ey+F=0£¬ÔòÓÉÌâÉ裬µÃ
c2-Ec+F=0
c2+Ec+F=0
3c2+
3
Dc+F=0
£¬ÓÉ´ËÄÜÇó³ö¡ÑMµÄ·½³Ì£®
£¨2£©¡ÑMÓëxÖáµÄÁ½¸ö½»µãA(
3
c£¬0)
£¬C(-
3
3
c£¬0)
£¬ÓÖB£¨b£¬0£©£¬D£¨-b£¬0£©£¬ÓÉÌâÉè
3
c£¾b
-
3
3
c£¾-b
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§£®
£¨3£©ÓÉM(
3
3
c£¬0)
£¬µÃ
3
c-b=b-
3
3
c=
3
3
c
£®ËùÒÔÖ±ÏßMF1µÄ·½³ÌΪ
x
3
3
c
-
y
c
=1
£¬ÓÉ´ËÄܹ»µ¼³öÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãQÔÚ¶¨Ö±Ïßy=
3
3
4
x
ÉÏ£®
½â´ð£º½â£º£¨1£©Éè¡ÑMµÄ·½³ÌΪx2+y2+Dx+Ey+F=0£¬
ÔòÓÉÌâÉ裬µÃ
c2-Ec+F=0
c2+Ec+F=0
3c2+
3
Dc+F=0

½âµÃ
D=-
2
3
3
c
E=0
F=-c2

¡ÑMµÄ·½³ÌΪx2+y2-
2
3
3
cx-c2=0
£¬
¡ÑMµÄ±ê×¼·½³ÌΪ(x-
3
3
c)2+y2=
4
3
c2
£»£¨5·Ö£©
£¨2£©¡ÑMÓëxÖáµÄÁ½¸ö½»µãA(
3
c£¬0)
£¬C(-
3
3
c£¬0)
£¬
ÓÖB£¨b£¬0£©£¬D£¨-b£¬0£©£¬
ÓÉÌâÉè
3
c£¾b
-
3
3
c£¾-b
¼´
3
c£¾b
3
3
c£¼b

ËùÒÔ
3c2£¾a2-c2
1
3
c2£¼a2-c2
½âµÃ
1
2
£¼
c
a
£¼
3
2
£¬
¼´
1
2
£¼e£¼
3
2
£®ËùÒÔÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§Îª(
1
2
£¬
3
2
)
£»£¨10·Ö£©
£¨3£©ÓÉ£¨1£©£¬µÃM(
3
3
c£¬0)
£®
ÓÉÌâÉ裬µÃ
3
c-b=b-
3
3
c=
3
3
c
£®
¡àb=
2
3
3
c
£¬D(-
2
3
3
c£¬0)
£®
¡àÖ±ÏßMF1µÄ·½³ÌΪ
x
3
3
c
-
y
c
=1
£¬
¢ÙÖ±ÏßDF2µÄ·½³ÌΪ-
x
2
3
3
c
+
y
c
=1
£®
¢ÚÓÉ¢Ù¢Ú£¬µÃÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãQ(
4
3
3
c£¬3c)
£¬
Ò×ÖªkOQ=
3
3
4
Ϊ¶¨Öµ£¬
¡àÖ±ÏßMF1ÓëÖ±ÏßDF2µÄ½»µãQÔÚ¶¨Ö±Ïßy=
3
3
4
x
ÉÏ£®£¨15·Ö£©
µãÆÀ£º±¾Ì⿼²éԲ׶ÇúÏßµÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÔ²ÇúÏßµÄÐÔÖʺ͹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¡°·½³Ì
x2
k-1
+
y2
k-3
=1
±íʾ½¹µãÔÚxÖáÉϵÄË«ÇúÏß¡±µÄ³äÒªÌõ¼þÊÇk¡Ê
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Pn£¨n£¬n2£©£¨n¡ÊN+£©ÊÇÅ×ÎïÏßy=x2Éϵĵ㣬¡÷OPnPn+1µÄÃæ»ýΪSn£®
£¨1£©ÇóSn£»
£¨2£©»¯¼ò
1
S1
+
1
S2
+¡­+
1
Sn
£»
£¨3£©ÊÔÖ¤Ã÷S1+S2+¡­+Sn=
n(n+1)(n+2)
6
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬A(4+2
3
£¬2)£¬B(4£¬4)
£¬Ô²CÊÇ¡÷OABµÄÍâ½ÓÔ²£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©Èô¹ýµã£¨2£¬6£©µÄÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤Îª4
3
£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º
x=-2+
3
5
t
y=2+
4
5
t
£¨tΪ²ÎÊý£©£¬ËüÓëÇúÏßC£º£¨y-2£©2-x2=1½»ÓÚA£¬BÁ½µã£®
£¨1£©Çó|AB|µÄ³¤£»
£¨2£©ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉèµãPµÄ¼«×ø±êΪ(2
2
£¬
3¦Ð
4
)
£¬ÇóµãPµ½Ï߶ÎABÖеãMµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¾ØÐÎABCDµÄÁ½±ßAB£¬CD·Ö±ðÂäÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬ÇÒAB=2£¬AD=4£¬µãAÓë×ø±êÔ­µãÖغϣ®ÏÖ½«¾ØÐÎÕÛµþ£¬Ê¹µãAÂäÔÚÏ߶ÎDCÉÏ£¬ÈôÕÛºÛËùÔÚµÄÖ±ÏßµÄбÂÊΪk£¬ÊÔд³öÕÛºÛËùÔÚÖ±Ïߵķ½³Ì¼°kµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸