(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知数列满足.
若,求的取值范围;
若是公比为等比数列,,求的取值范围;
若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.
(1);(2);(3)的最大值为1999,此时公差为.
解析试题分析:(1)比较容易,只要根据已知列出不等式组,即可解得;(2)首先由已知得不等式,即,可解得。又有条件,这时还要忘记分类讨论,时,,满足,当时,有,解这不等式时,分类,分和进行讨论;(3)由已知可得∴,∴,,这样我们可以首先计算出的取值范围是,再由,可得,从而,解得,即最大值为1999,此时可求得.
试题解析:(1)由题得,
(2)由题得,∵,且数列是等比数列,,
∴,∴,∴.
又∵,∴当时,对恒成立,满足题意.
当时,
∴①当时,,由单调性可得,,解得,
②当时,,由单调性可得,,解得,
(3)由题得,∵,且数列成等差数列,,
∴,∴,,
所以时,,时,,所以.
∴
又∵,∴
∴,∴,解得,,
∴的最大值为1999,此时公差为.
【考点】解不等式(组),数列的单调性,分类讨论,等差(比)数列的前项和.
科目:高中数学 来源: 题型:解答题
已知实数,且按某种顺序排列成等差数列.
(1)求实数的值;
(2)若等差数列的首项和公差都为,等比数列的首项和公比都为,数列和的前项和分别为,且,求满足条件的自然数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013·安徽高考)设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2,求数列{bn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com