精英家教网 > 高中数学 > 题目详情

如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=AB=2,E,F分别是AB与PD的中点.

(1)求证:PC⊥BD;

(2)求证:AF//平面PEC;

(3)求二面角P—EC—D的大小.

(1)证明见解析(2)证明见解析(3)


解析:

证明:(1)连结AC,则AC⊥BD。

∵PA⊥平面ABCD,AC是斜线PC在平面ABCD上的射影,

∴由三垂线定理得PC⊥BD。………………4分

   (2)取PC的中点K,连结FK、EK,则四边形AEKF是平行四边形。

∴AF//EK,又EK平面PEC,AF平面PEC,∴AF//平面PEC。…………4分

   (3)延长DA、CE交于M,过A作AH⊥CM于H,

连结PH,由于PA⊥平面ABCD,可得PH⊥CM。

∴∠PHA为所求二面角P—EC—D的平面角。………………10分

∵E为AB的中点,AE//CD,∴AM=AD=2,

在△AME中,∠MAE=120°,

由余弦定理得

………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面积是菱形,AC交BD于O,PO⊥平面ABC,E为AD中点,F在PA上,AP=λAF,PC∥平面BEF.
(1)求λ的值;
(2)若AB=2,∠ADB=∠BPC=60°,求三棱锥A-EFB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥P-ABCD的底面积是菱形,AC交BD于O,PO⊥平面ABC,E为AD中点,F在PA上,AP=λAF,PC∥平面BEF.
(1)求λ的值;
(2)若AB=2,∠ADB=∠BPC=60°,求三棱锥A-EFB的体积.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年云南省昆明一中高三(上)第二次摸底数学试卷(文科)(解析版) 题型:解答题

如图,已知四棱锥P-ABCD的底面积是菱形,AC交BD于O,PO⊥平面ABC,E为AD中点,F在PA上,AP=λAF,PC∥平面BEF.
(1)求λ的值;
(2)若AB=2,∠ADB=∠BPC=60°,求三棱锥A-EFB的体积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市东城区示范校高三(上)12月联考数学试卷(文科)(解析版) 题型:选择题

如图,已知在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ<),则四棱锥P-ABCD的体积V的取值范围是( )

A.[
B.(]
C.(]
D.[

查看答案和解析>>

同步练习册答案