精英家教网 > 高中数学 > 题目详情
如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点为A,左焦点为F,上顶点为B,若∠BAO+∠BFO=90°,则该椭圆的离心率是______.
设椭圆的右焦点为F′,
由题意得 A(-a,0)、B(0,b),F′(c,0),
∵∠BAO+∠BFO=90°,且∠BFO=∠BF′O,
∴∠BAO+∠BF′O=90°,
AB
BF′
=0,
∴(a,b)•(c,-b)=ac-b2=ac-a2+c2=0,
∴e-1+e2=0,
解得 e=
5
-1
2

故答案为:
5
-1
2

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆过点(3,0)且离心率为
6
3
,则椭圆标准方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆
x2
16
+
y2
9
=1
的一个焦点F1的直线与椭圆交于A,B两点,则A,B与椭圆的另一个焦点F2构成△ABF2,则△ABF2的周长是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个顶点到其左、右两个焦点F1,F2的距离分别为5和1;点P是椭圆上一点,且在x轴上方,直线PF2的斜率为-
15

(Ⅰ)求椭圆E的方程;
(Ⅱ)求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1,F2,P是椭圆上的一点,且|PF1|,|F1F2|,|PF2|成等比数列,则椭圆的离心率的取值范围为(  )
A.[
1
2
2
2
]
B.[
5
-1,
1
2
]
C.[
2
-1,
1
2
]
D.[
5
5
1
2
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程
x2
a
-
y2
b
=1表示焦点在y轴上的椭圆,则下列关系成立的是(  )
A.
-b
a
B.
-b
a
C.
b
-a
D.
b
-a

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

巳知F1,F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两焦点,以线段F1F2为边作正三角形PF1F2,若边PF1的中点在椭圆上,则该椭圆的离心率是(  )
A.
3
-1
B.
3
+1
C.
1
2
D.
3
-1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是(  )
A.[
1
2
,1)
B.(
2
2
,1)
C.[
1
2
6
3
D.(0,
2
2

查看答案和解析>>

同步练习册答案