精英家教网 > 高中数学 > 题目详情
6.平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,$A{A_1}=\sqrt{2}$,∠A1AD=∠A1AB=120°,则对角线BD1的长度为2.

分析 由于平行六面体ABCD-A1B1C1D1的棱长都为1,底面ABCD为正方形,且AA1和AB与AD的夹角都等于120°,可以推出BB1⊥BD,求出BD1即可求解结果.

解答 解:平行六面体ABCD-A1B1C1D1的侧棱长都为$\sqrt{2}$,底面ABCD为正方形,
且AA1和AB与AD的夹角都等于120°,那么AA1在底面ABCD上的射影垂直BD,
即BB1D1D是矩形,DB=$\sqrt{2}$,所以对角线BD1=2,
故答案为:2.

点评 本题考查棱柱的结构特征,考查三垂线定理,解答关键是利用线面位置关系得到BB1D1D是矩形,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1中.
求证:
(1)A1C⊥BD;
(2)平面AB1D1∥平面BC1D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.i表示虚数单位,则1+i1+i2+…+i2014=i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,△O'A'B'是水平放置的△OAB的直观图,则△OAB的周长为(  )
A.$10+2\sqrt{13}$B.3$\sqrt{2}$C.$10+4\sqrt{13}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a<0,函数f(x)=$\frac{1}{2}$x2+(a-1)x-aln x.
(1)若曲线y=f(x)在(2,f(2))处切线的斜率为-1,求a的值;
(2)当-1<a<0时,求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知关于x的一元二次方程9x2+6ax-b2+4=0,a,b∈R
(1)若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求已知方程有两个不相等实根的概率;
(2)若a是从区间[0,3]内任取一个数,b是从区间[0,2]内任取一个数,求已知方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.
(Ⅰ)证明:CD⊥平面PAD;
(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.实数m分别取什么数值时,复数z=(m+2)+(3-2m)i
(1)与复数12+17i互为共轭;
(2)复数的模取得最小值,求出此时的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=2sin(\frac{π}{3}-\frac{x}{2})$,
(1)求f(x)的最小正周期T;
(2)求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案