如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是锐角,且平面ACEF⊥平面ABCD.
(1)求证:;
(2)试判断直线DF与平面BCE的位置关系,并证明你的结论.
(1)详见试题解析;(2)DF∥平面BCE.证明详见试题解析.
解析试题分析:(1)证明线线垂直,可转化为证明线面垂直.要证,只要证平面,由已知平面ACEF⊥平面ABCD,故由面面垂直的性质定理知,只要证.在等腰梯形ABCD中,由已知条件及平面几何相关知识,易得;(2)首先给出结论DF∥平面BCE,再给出证明.要证线面平行,由利用判定定理可以转化为证明线线平行,即只要在平面BCE找DF的平行线,或由面面平行的性质定理转化为证明面面平行,即过DF找一个平面与平面BCE平行,而后一种方法容易实施.
试题解析:(1)证明:取AB中点H,连结CH.底面ABCD是梯形,且AD=DC=CB=AB,易证四边形AHCD为平行四边形,
∴AD=HC=AB,= , 3分
平面平面,且平面平面,平面,而平面,故. 6分
(2)平面,以下证明:
取AC的中点M,连接DM,FM.在平面ABCD中,DM,BC⊥AC,故DM∥BC. 8分
在直角梯形ACEF中,,故FM∥EC. 10分
而BC,CE平面BCE,BC∩CE=C,而DM,MF平面DMF,DM∩MF=M,故平面BCE∥平面DMF,DF平面DMF,从而,DF∥平面BCE. 12分
考点:1.空间垂直关系的证明;2.空间线面位置关系的判断与证明.
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥EABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD.
(1)求证:AB⊥ED;
(2)线段EA上是否存在点F,使DF∥平面BCE?若存在,求出;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.
(1)证明:PQ⊥平面DCQ;
(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,
求证:GM∥平面ABFE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O为AC中点.
(1)证明:A1O⊥平面ABC;
(2)若E是线段A1B上一点,且满足VE-BCC1=·VABC-A1B1C1,求A1E的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥PABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)求证:DE∥平面PBC;
(2)求证:DE⊥平面PAB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com