【题目】在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正
边形等分成
个等腰三角形(如图所示),当
变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin3°的近似值为( )(
取近似值3.14)
![]()
A.0.012B.0.052
C.0.125D.0.235
科目:高中数学 来源: 题型:
【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为
万元/辆和
万元/辆的
两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:
![]()
(1)填写下表,并判断是否有
的把握认为出租车的使用寿命年数与汽车车型有关?
![]()
(2)从
和
的车型中各随机抽取
车,以
表示这
车中使用寿命不低于
年的车数,求
的分布列和数学期望;
(3)根据公司要求,采购成本由出租公司负责,平均每辆出租车每年上交公司
万元,其余维修和保险等费用自理.假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这
辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?
附:
,
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(
为参数),直线
,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l和曲线C的极坐标方程;
(2)若直线
与直线l相交于点A,与曲线C相交于不同的两点M,N.求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了
天空气中的
和
浓度(单位:
),得下表:
![]()
(1)估计事件“该市一天空气中
浓度不超过
,且
浓度不超过
”的概率;
(2)根据所给数据,完成下面的
列联表:
![]()
(3)根据(2)中的列联表,判断是否有
的把握认为该市一天空气中
浓度与
浓度有关?
附:
,
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个正方体的平面展开图如图所示,在这个正方体中,点
是棱
的中点,
,
分别是线段
,
(不包含端点)上的动点,则下列说法正确的是( )
![]()
A.在点
的运动过程中,存在![]()
B.在点
的运动过程中,存在![]()
C.三棱锥
的体积为定值
D.三棱锥
的体积不为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个顶点为
,右焦点为
,且
,其中
为原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
满足
,点
在椭圆上(
异于椭圆的顶点),直线
与以
为圆心的圆相切于点
,且
为线段
的中点.求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】网络购物已经成为人们的一种生活方式.某购物平台为了给顾客提供更好的购物体验,为入驻商家设置了积分制度,每笔购物完成后,买家可以根据物流情况、商品质量等因素对商家做出评价,评价分为好评、中评和差评平台规定商家有50天的试营业时间,期间只评价不积分,正式营业后,每个好评给商家计1分,中评计0分,差评计
分,某商家在试营业期间随机抽取100单交易调查了其商品的物流情况以及买家的评价情况,分别制成了图1和图2.
![]()
(1)通常收件时间不超过四天认为是物流迅速,否则认为是物流迟缓;
请根据题目所给信息完成下面
列联表,并判断能否有
的把握认为“获得好评”与物流速度有关?
好评 | 中评或差评 | 合计 | |
物流迅速 | |||
物流迟缓 | 30 | ||
合计 |
(2)从正式营业开始,记商家在每笔交易中得到的评价得分为
.该商家将试营业50天期间的成交情况制成了频数分布表(表1),以试营业期间成交单数的频率代替正式营业时成交单数发生的概率.
表1
成交单数 | 36 | 30 | 27 |
天数 | 10 | 20 | 20 |
(Ⅰ)求
的分布列和数学期望;
(Ⅱ)平台规定,当积分超过10000分时,商家会获得“诚信商家”称号,请估计该商家从正式营业开始,1年内(365天)能否获得“诚信商家”称号
附:![]()
参考数据:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com