精英家教网 > 高中数学 > 题目详情
20.求${({1+x+\frac{1}{x^2}})^{10}}$的展开式中的常数项.

分析 将已知的二项式转化为:(1+x+$\frac{1}{{x}^{2}}$)10=(1+x+$\frac{1}{{x}^{2}}$)(1+x+$\frac{1}{{x}^{2}}$)…(1+x+$\frac{1}{{x}^{2}}$)(10个括号相乘),利用组合数的性质,即可求得其展开式中的常数项

解答 解:求${({1+x+\frac{1}{x^2}})^{10}}$═(1+x+$\frac{1}{{x}^{2}}$)(1+x+$\frac{1}{{x}^{2}}$)•…•(1+x+$\frac{1}{{x}^{2}}$)(10个括号相乘),
∴每个括号中都提供常数项1,有110种;
从10个括号中有选两个提供x项,从剩余的8个括号中选一个提供$\frac{1}{{x}^{2}}$,其余的括号中均提供1,有${C}_{10}^{2}$•${C}_{8}^{1}$ 种;
从10个括号中有选4个提供x项,从剩余的6个括号中选2个提供$\frac{1}{{x}^{2}}$,其余的括号中均提供1,有${C}_{10}^{4}$•${C}_{6}^{2}$ 种;
从10个括号中有选6个提供x项,从剩余的4个括号中选3个提供$\frac{1}{{x}^{2}}$,其余的括号中均提供1,有${C}_{10}^{6}$•${C}_{4}^{3}$种;
∴展开式中的常数项为1+${C}_{10}^{2}{•C}_{8}^{1}$+${C}_{10}^{4}{•C}_{6}^{2}$+${C}_{10}^{6}{•C}_{4}^{3}$=1+360+3150+840=4351.

点评 本题考查二项式系数的性质,熟练应用组合数的性质是解决问题的关键,突出考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在单位圆x2+y2=1内随机均匀产生一点(x,y),使得$\left\{{\begin{array}{l}{\sqrt{3}x-y≥0}\\{x+\sqrt{3}y≥0}\end{array}}\right.$成立的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设全集U={1,2,3,4,5,6},A={2,4,5},B={3,4,5,6},则图中阴影部分表示的集合为  (  )
A.(∁UA)∩BB.(∁UA)∩(CUB)C.A∩(∁UB)D.A∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某商场举行抽奖促销活动,在该商场消费的顾客按如下规则参加抽奖活动:
消费金额X(元)[500,1000)[1000,1500)[1500,+∞)
抽奖次数124
抽奖中有9个大小形状完全相同的小球,其中4个红球、3个白球、2个黑球(每次只能抽取一个,且不放回抽取),若抽得红球,获奖金10元;若抽得白球,获奖金20元;若抽得黑球,获奖金40元,
(1)若某顾客在该商场当日消费金额为2000元,求该顾客获得奖金70元的概率;
(2)若某顾客在该商场当日消费金额为1200元,获奖金ξ元.求ξ的分布列和E(ξ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知曲线y=1+lnx与过原点的直线相切,则直线的斜率为(  )
A.eB.-eC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx+$\frac{1}{2}a$x2-(a+1)x(a∈R).
(I)a=1时,求函数y=f(x)的零点个数;
(Ⅱ)当a>0时,若函数y=f(x)在区间[1.e]上的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{a+ln(2x+1)}{2x+1}$
(1)若a=2时,求函数y=f(x)的极值;
(2)若关于t的方程(2x+1)2f′(x)=t3-12t在$x∈[{\frac{e-1}{2},\frac{{{e^2}-1}}{2}}]$时恒有3个不同的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知z∈C,且|z+3-4i|=1,则|z|的最大值为6,最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an},a1=1,an+1=an+n,计算数列{an}的第20项.现已给出该问题算法的程序框图(如图所示).为使之能完成上述的算法功能,则在如图判断框中(A)处和(B)处依次应填上合适的语句是(  )
A.n≤20,S=S-nB.n≤20,S=S+nC.n≤19,S=S-nD.n≤19,S=S+n

查看答案和解析>>

同步练习册答案