精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-x2+ax-5
在区间[-1,2]上单调递减,则实数a的取值范围为(  )
A、(-∞,+∞)
B、[1,+∞)
C、(-3,1)
D、(-∞,-3]
分析:求出函数的单调区间,由于函数在[-1,2]上单调递减,故此区间是其定义上单调区间的子集,故比较区间的端点即可得到参数的取值范围,选出正确答案.
解答:解:函数的导数为f'(x)=x2-2x+a,判断知△=4-4a>0.得a<1
相应方程的根为x=
4-4a
2

令f′(x)=x2-2x+a<0,解得
2-
4-4a?
2
<x<
2+
4-4a?
2
,即函数在(
2-
4-4a?
2
2+
4-4a?
2
)
上是减函数,
又函数在区间[-1,2]上单调递减,
2-
4-4a?
2
≤-1且
2+
4-4a?
2
≥2
,解得a≤-3
综上得实数a的取值范围为(-∞,-3]
故选D
点评:本题考查利用导数研究函数的单调性,求解本题的关键是利用导数求出函数的单调递减区间以及根据题设条件作出正确判断得出参数所满足的不等式,解出参数的取值范围,根据题设转化出不等式是本题的易错点,要注意等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案