精英家教网 > 高中数学 > 题目详情
曲线y=f(x)在点P(3,f(3))处的切线方程是y=ax+8,若f(3)+f′(3)=0,则实数a=
-2
-2
分析:根据导数的几何意义可得f′(3)=a,以及切点既在曲线上又在切线上可得f(3)=3a+8,最后根据f(3)+f′(3)=0可求出a的值.
解答:解:∵曲线y=f(x)在点P(3,f(3))处的切线方程是y=ax+8,
∴f′(3)=a,f(3)=3a+8
∵f(3)+f′(3)=0,
∴a+3a+8=0解得a=-2
故答案为:-2
点评:本题主要考查了导数的几何意义,以及切点既在曲线上又在切线上,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、设函数f(x)=g(2x-1)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax.
(Ⅰ)求函数f(x)的极值,
(Ⅱ)已知过点P(1,f(1)),Q(e,f(e))的直线为l,则必存在x0∈(1,e),使曲线y=f(x)在点(x0,f(x0))处的切线与直线l平行,求x0的值,
(Ⅲ)已知函数g(x)图象在[0,1]上连续不断,且函数g(x)的导函数g'(x)在区间(0,1)内单调递减,若g(1)=0,试用上述结论证明:对于任意x∈(0,1),恒有g(x)>g(0)(1-x)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax 3-
32
x2+1(x∈R)
,其中a>0.
(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a≠0时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区二模)已知函数f(x)=
23
x3-2x2+(2-a)x+1
,其中a∈R.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案