精英家教网 > 高中数学 > 题目详情
3.已知:在平面Rt△ABC,∠C=90°,动点P满足|PC|+|CB|=|PA|+|AB|,则点P的轨迹是(  )
A.椭圆B.双曲线C.双曲线的一支D.抛物线

分析 动点P满足|PC|+|CB|=|PA|+|AB|,可得|PC|-|PA|=|AB|-|CB|<|AC|,即可求出点P的轨迹.

解答 解:∵动点P满足|PC|+|CB|=|PA|+|AB|,
∴|PC|-|PA|=|AB|-|CB|<|AC|,
∴点P的轨迹是双曲线的一支,
故选:C.

点评 本题考查轨迹方程,考查双曲线的定义,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设等比数列{an}的前n项和为Sn,已知a1=1,q=2,则S10=(  )
A.1023B.2047C.511D.255

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,集合A={x|x<-4,或x>1},B={x|-3≤x-1≤2},
(1)求A∩B,(∁UA)∪(∁UB);
(2)若集合M={x|2a≤x≤2a+1}是集合A的子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若用“五点法”画函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的图象,其五点如下表:
x $\frac{π}{2}$ 2π $\frac{7π}{2}$ 5π $\frac{13π}{2}$
 y-2 0
(1)求函数f(x)的解析式;
(2)设g(x)=Acos(ωx+φ),若关于x的方程g(x)+λ=0在[π,7π]内恰有两个不同的解α,β,求实数λ的取值范围,并求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1上在第一象限内的一点,过P作实轴的垂线,垂足为M(10,0),又过M作圆x2+y2=a2的切线,切点为Q,若cos∠MOQ=$\frac{3}{5}$,求双曲线的方程和点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个三棱锥三视图如图所示,则该三棱锥的外接球的表面积为(  )
A.25πB.$\frac{29π}{4}$C.116πD.29π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知奇函数f(x)=$\frac{a•{2}^{x}-2+a}{{2}^{x}+1}$.
(1)求a的值;
(2)求函数f(x)的值域;
(3)若对任意t∈(-1,0],不等式f(t2-mt+7)+f(t2+5t-m)>0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE,BE,∠APE的平分线与AE,BE分别交于点C,D.
(1)求证:$\frac{DB}{DE}$=$\frac{PD}{PC}$;
(2)若∠PCE=2∠AEB,求∠PDB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=cos2x+sinx(-$\frac{π}{6}$≤x≤$\frac{π}{6}$)的最大值与最小值之和为(  )
A.$\frac{3}{2}$B.2C.0D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案