精英家教网 > 高中数学 > 题目详情
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.
(1)求的值,
(2)设在甲、乙、丙三人中破译出密码的总人数为X,求X的分布列和数学期望E(X).
(1);(2)分布列详见解析,.

试题分析:本题主要考查概率的计算公式、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力,考查基本运算能力.第一问,是事件的相互独立性,通过独立事件的概率公式列出已知条件中的表达式,解方程解出;第二问,是求分布列和期望,同样利用独立事件的概率公式,求出每一种情况下的概率,画出分布列,利用期望的计算公式计算期望.
试题解析:记“甲、乙、丙三人各自破译出密码”分别为事件,依题意有,且相互独立.        2分
(1)设“三人中只有甲破译出密码”为事件
则有.          5分
所以,得.         6分
(2)的所有可能取值为0,1,2,3.
所以


.        10分
的分布列为

所以.        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

记者在街上随机抽取10人,在一个月内接到的垃圾短信条数统计的茎叶图如下:

(Ⅰ)计算样本的平均数及方差;
(Ⅱ)现从10人中随机抽出2名,设选出者每月接到的垃圾短信在10条以下的人数为,求随机变量的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)写出数量积X的所有可能取值;
(Ⅱ)分别求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,从有6条网线,数字表示该网线单位时间内可以通过的最大信息量,现从中任取3条网线且使每条网线通过最大信息量,设这三条网线通过的最大信息之和为.

(1)当时,线路信息畅通,求线路信息畅通的概率;
(2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某品牌汽车的4店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4店经销一辆该品牌的汽车,顾客若一次付款,其利润为1万元;若分2期付款或3期付款,其利润为1.5万元;若分4期付款或5期付款,其利润为2万元.用表示经销一辆该品牌汽车的利润.
付款方式
一次
分2期
分3期
分4期
分5期
频数
40
20
a
10
b
(1)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率
(2)求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

袋中共有5个除颜色外完全相同的小球,其中1个红球,2个白球和2个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一种电子抽奖方式是:一次抽奖点击四次按钮,每次点击后,随机出现数字1,2,3,4.当出现的四个数字不重复,且相邻两数字不是连续数字(即两个数字差的绝对值为1)时,获头奖,则第一次抽奖获头奖的概率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从1,2,3,4,5组成的数字不重复的五位数中,任取一个五位数,满足条件“”的概率是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个不透明的口袋中装有形状相同的红球、黄球和蓝球,若摸出一球为红球的概率为,黄球的概率为,袋中红球有4个,则袋中蓝球的个数为(    ).
A.5个B.11个C.4个D.9个

查看答案和解析>>

同步练习册答案