精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|x2-3x-4≥0},B={x|2<x<5},则A∩B=(  )
A.(1,5)B.[1,5)C.(4,5)D.[4,5)

分析 求解一元二次不等式化简集合B,然后直接利用交集的运算求解.

解答 解:集合A={x|x2-3x-4≥0}=(-∞,-1]∪[4,+∞),B={x|2<x<5}=(2,5),
则A∩B=[4,5),
故选:D

点评 本题考查交集及其运算,考查了一元二次不等式的解法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若抛物线y2=ax的焦点到其准线的距离是2,则a=(  )
A.±1B.±2C.±4D.±8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在长方体ABCD-A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截长方体得到一个矩形EFGH,且A1E=D1F=2,AH=DG=5.
(1)求截面EFGH把该长方体分成的两部分体积之比;
(2)求直线AF与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(1)求证:PA⊥AB;
(2)设M为PD的中点,求三棱锥M-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x+$\frac{2}{\sqrt{x}}$)6的展开式中,x3项的系数是60(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.城市发展面临生活垃圾产生量逐年剧增的困扰,为了建设宜居城市,2017年1月,某市制定《生活垃圾分类和减量工作方案》,到2020年,生活垃圾无害化处理率达到100%.如图是该市2011~2016年生活垃圾年产生量(单位:万吨)的柱状图;如表是2016年年初与年末对该市四个社区各随机抽取1000人调查参与垃圾分类人数的统计表:

2016年初2016年末
社区A539568
社区B543585
社区C568600
社区D496513
注1:年份代码1~6分别对应年份2011~2016
注2:参与度=$\frac{参加垃圾分类人数}{调查人数}$×100%
参与度的年增加值=年末参与度-年初参与度
(1)由图可看出,该市年垃圾生产量y与年份代码t之间具有较强的线性相关关系,运用最小二乘法可得回归直线方程为$\widehat{y}$=14.8t+$\widehat{a}$,预测2020年该年生活垃圾的产生量;
(2)已知2016年该市生活在垃圾无害化化年处理量为120万吨,且全市参与度每提高一个百分点,都可使该市的生活垃圾无害化处理量增加6万吨,用样本估计总体的思想解决以下问题:
①由表的数据估计2016年该市参与度的年增加值,假设2017年该市参与度的年增加值与2016年大致相同,预测2017年全市生活垃圾无害化处理量;
②在2017年的基础上,若2018年至2020年的参与度逐年增加5个百分点,则到2020年该市能否实现生活垃圾无害化处理率达到100%的目标?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an} 满足a1=$\frac{1}{3}$,a2=$\frac{2}{3}$,an+2-an+1=(-1)n+1(an+1-an)(n∈N*),数列{an}的前n项和为Sn,则S2017=$\frac{4033}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知公比q≠1的等比数列{an}前n项和Sn,a1=1,S3=3a3,则S5=(  )
A.1B.5C.$\frac{31}{48}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某企业市场调研部为调查新开发的产品定价与销量之间的关系,在某地区进行小范围差价试销,已知该产品定价区间为[96,106](单位:元/件),已知统计了600件产品的销售价格,其频率分布直方图如图所示,若各个小方形的高构成一个等差数列,则在这600件产品中,销售价格在区间[98,102)内的产品件数是135.

查看答案和解析>>

同步练习册答案