精英家教网 > 高中数学 > 题目详情
6.已知公比q≠1的等比数列{an}前n项和Sn,a1=1,S3=3a3,则S5=(  )
A.1B.5C.$\frac{31}{48}$D.$\frac{11}{16}$

分析 根据题意先求出公比,再根据前n项和公式计算即可.

解答 解:因为S3=a1+a2+a3=3a3
∴a1+a2=2a3
化简可得1+q-2q2=0,
解得q=1(舍)或q=-$\frac{1}{2}$,
由等比数列的前n项和公式得S5=$\frac{1-(-\frac{1}{2})^{5}}{1+\frac{1}{2}}$=$\frac{11}{16}$,
故选:D

点评 本题考查了等比数列的前n项和公式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知等腰梯形ABCD中,AB∥DC、CD=2AB=4,∠A=$\frac{2π}{3}$,向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{AD}$=2$\overrightarrow{a}$,$\overrightarrow{BC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则下列式子不正确的是(  )
A.|$\overrightarrow{b}$|=2B.|2$\overrightarrow{a}-\overrightarrow{b}$|=2$\sqrt{3}$C.2$\overrightarrow{a}•\overrightarrow{b}$=-2D.$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x2-3x-4≥0},B={x|2<x<5},则A∩B=(  )
A.(1,5)B.[1,5)C.(4,5)D.[4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为$\stackrel{∧}{y}$=1.3x-1,则m的值为(  )
x1234
y0.11.8m4
A.2.9B.3.1C.3.5D.3.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线右焦点F倾斜角为$\frac{π}{4}$直线与该双曲线的渐近线分别交于M、N,O为坐标原点,若△OMF与△ONF的面积比等于2:1,则该双曲线的离心率等于(  )
A.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:
1.抽奖方案有以下两种,方案a:从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将抽出的球放回甲袋中,方案b:从装有2个红球、1个白球(仅颜色相同)的乙袋中随机摸出1个球,若是红球,则获得奖金10元;否则,没有奖金,兑奖后将抽出的球放回乙袋中.
2.抽奖条件是,顾客购买商品的金额满100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案a抽奖三次或方案b抽奖两次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为250元.
(1)若顾客A只选择方案a进行抽奖,求其所获奖金为15元的概率;
(2)若顾客A采用每种抽奖方式的可能性都相等,求其最有可能获得的奖金数(除0元外).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a=(3,4)$,$\overrightarrow b=(x,1)$,若$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则实数x等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f'(x)是函数y=f(x)的导数,f''(x)是f'(x)的导数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.已知:任何三次函数既有拐点,又有对称中心,且拐点就是对称中心.设f(x)=$\frac{1}{3}{x^3}-2{x^2}+\frac{8}{3}$x+1,数列{an}的通项公式为an=2n-7,则f(a1)+f(a2)+…+f(a8)=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面四边形ABCD中,∠A=45°,∠B=120°,AB=$\sqrt{2}$,AD=2.设CD=t,则t的取值范围是[$\frac{\sqrt{2}}{2}$,1+$\sqrt{3}$).

查看答案和解析>>

同步练习册答案