精英家教网 > 高中数学 > 题目详情
14.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为$\stackrel{∧}{y}$=1.3x-1,则m的值为(  )
x1234
y0.11.8m4
A.2.9B.3.1C.3.5D.3.8

分析 利用线性回归方程经过样本中心点,即可求解.

解答 解:由题意,$\overline{x}$=2.5,代入线性回归方程为$\stackrel{∧}{y}$=1.3x-1,可得$\overline{y}$=2.25,
∴0.1+1.8+m+4=4×2.25,
∴m=3.1.
故选B.

点评 本题考查线性回归方程经过样本中心点,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若二次函数f(x)=ax2+bx+c(a≤b)的值域为[0,+∞),则$\frac{b-a}{a+b+c}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(1)求证:PA⊥AB;
(2)设M为PD的中点,求三棱锥M-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.城市发展面临生活垃圾产生量逐年剧增的困扰,为了建设宜居城市,2017年1月,某市制定《生活垃圾分类和减量工作方案》,到2020年,生活垃圾无害化处理率达到100%.如图是该市2011~2016年生活垃圾年产生量(单位:万吨)的柱状图;如表是2016年年初与年末对该市四个社区各随机抽取1000人调查参与垃圾分类人数的统计表:

2016年初2016年末
社区A539568
社区B543585
社区C568600
社区D496513
注1:年份代码1~6分别对应年份2011~2016
注2:参与度=$\frac{参加垃圾分类人数}{调查人数}$×100%
参与度的年增加值=年末参与度-年初参与度
(1)由图可看出,该市年垃圾生产量y与年份代码t之间具有较强的线性相关关系,运用最小二乘法可得回归直线方程为$\widehat{y}$=14.8t+$\widehat{a}$,预测2020年该年生活垃圾的产生量;
(2)已知2016年该市生活在垃圾无害化化年处理量为120万吨,且全市参与度每提高一个百分点,都可使该市的生活垃圾无害化处理量增加6万吨,用样本估计总体的思想解决以下问题:
①由表的数据估计2016年该市参与度的年增加值,假设2017年该市参与度的年增加值与2016年大致相同,预测2017年全市生活垃圾无害化处理量;
②在2017年的基础上,若2018年至2020年的参与度逐年增加5个百分点,则到2020年该市能否实现生活垃圾无害化处理率达到100%的目标?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an} 满足a1=$\frac{1}{3}$,a2=$\frac{2}{3}$,an+2-an+1=(-1)n+1(an+1-an)(n∈N*),数列{an}的前n项和为Sn,则S2017=$\frac{4033}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.甲、乙、丙3位志愿者安排在周一至周六的六天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排放法共有(  )
A.20种B.30种C.40种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知公比q≠1的等比数列{an}前n项和Sn,a1=1,S3=3a3,则S5=(  )
A.1B.5C.$\frac{31}{48}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=|2x+3|-|2x-1|.
(Ⅰ)求不等式f(x)<2的解集;
(Ⅱ)若存在x∈R,使得f(x)>|3a-2|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|y=lg(x+1)},B={-2,-1,0,1},则(∁RA)∩B=(  )
A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}

查看答案和解析>>

同步练习册答案