精英家教网 > 高中数学 > 题目详情
2.城市发展面临生活垃圾产生量逐年剧增的困扰,为了建设宜居城市,2017年1月,某市制定《生活垃圾分类和减量工作方案》,到2020年,生活垃圾无害化处理率达到100%.如图是该市2011~2016年生活垃圾年产生量(单位:万吨)的柱状图;如表是2016年年初与年末对该市四个社区各随机抽取1000人调查参与垃圾分类人数的统计表:

2016年初2016年末
社区A539568
社区B543585
社区C568600
社区D496513
注1:年份代码1~6分别对应年份2011~2016
注2:参与度=$\frac{参加垃圾分类人数}{调查人数}$×100%
参与度的年增加值=年末参与度-年初参与度
(1)由图可看出,该市年垃圾生产量y与年份代码t之间具有较强的线性相关关系,运用最小二乘法可得回归直线方程为$\widehat{y}$=14.8t+$\widehat{a}$,预测2020年该年生活垃圾的产生量;
(2)已知2016年该市生活在垃圾无害化化年处理量为120万吨,且全市参与度每提高一个百分点,都可使该市的生活垃圾无害化处理量增加6万吨,用样本估计总体的思想解决以下问题:
①由表的数据估计2016年该市参与度的年增加值,假设2017年该市参与度的年增加值与2016年大致相同,预测2017年全市生活垃圾无害化处理量;
②在2017年的基础上,若2018年至2020年的参与度逐年增加5个百分点,则到2020年该市能否实现生活垃圾无害化处理率达到100%的目标?

分析 (1)计算$\overline{t}$,$\overline{y}$,代入回归方程求出$\overline{a}$,得出回归方程,再令t=10计算2020年生活垃圾的产生量;
(2)①计算2016年的参与度增加值,得出2017年的参与度增加值的百分比,从而得出2017年的生活垃圾无害化处理量;
②计算2016到2020年参与度增加量的百分比,计算2020年的生活垃圾无害化处理量,与2020年的生活垃圾的产生量比较大小即可得出结论.

解答 解:(1)由图知,$\overline{t}$=$\frac{1}{6}$×(1+2+3+4+5+6)=3.5,
$\overline{y}$=$\frac{1}{6}$×(92+115+120+128+155+170)=130;
∴130=14.8×3.5+$\overline{a}$,∴$\widehat{a}$=130-14.8×3.5=78.2,
∴回归直线方程为$\widehat{y}$=14.8t+78.2,
令x=10,计算$\widehat{y}$=14.8×10+78.2=226.2,
∴预测2020年该年生活垃圾的产生量为226.2吨.
(2)①2016年初的参与度为$\frac{539+543+568+496}{1000×4}$=0.5365,
2016年末的参与度为$\frac{568+585+600+513}{1000×4}$=0.5665,
∴2016年该市参与度的年增加值为0.5665-0.5365=0.03.
∴2017年的参与度年增加值为0.03,即增加3个百分点,
∴2017年全市生活垃圾无害化处理量为120+6×3=138万吨.
②2020年的参与度相比2016年增加18个百分点,
∴2020年的全市生活垃圾无害化处理量为120+18×6=228万吨,
∵228>226.2,
∴到2020年该市能实现生活垃圾无害化处理率达到100%的目标.

点评 本题考查了数据统计处理,线性回归方程的求解与预测,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,CD⊥EA,CD=2EF=2,ED=$\sqrt{3}$.M为棱FC上一点,平面ADM与棱FB交于点N.
(Ⅰ)求证:ED⊥CD;
(Ⅱ)求证:AD∥MN;
(Ⅲ)若AD⊥ED,试问平面BCF是否可能与平面ADMN垂直?若能,求出$\frac{FM}{FC}$的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x2-x-2,x∈[-3,3],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,多面体ABCDE中,AB=AC,BE∥CD,BE⊥BC,平面BCDE⊥平面ABC,M为BC的中点.
(Ⅰ)若N是线段AE的中点,求证:MN∥平面ACD.
(Ⅱ)若N是AE上的动点且BE=1,BC=2,CD=3,求证:DE⊥MN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x2-3x-4≥0},B={x|2<x<5},则A∩B=(  )
A.(1,5)B.[1,5)C.(4,5)D.[4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-2ax(其中a∈R).
(1)当a=2时,求函数f(x)的图象在x=1处的切线方程;
(2)若f(x)≤2恒成立,求a的取值范围;
(3)设g(x)=f(x)+$\frac{1}{2}$x2,且函数g(x)有极大值点x0.求证:x0f(x0)+1+ax${\;}_{0}^{2}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为$\stackrel{∧}{y}$=1.3x-1,则m的值为(  )
x1234
y0.11.8m4
A.2.9B.3.1C.3.5D.3.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:
1.抽奖方案有以下两种,方案a:从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将抽出的球放回甲袋中,方案b:从装有2个红球、1个白球(仅颜色相同)的乙袋中随机摸出1个球,若是红球,则获得奖金10元;否则,没有奖金,兑奖后将抽出的球放回乙袋中.
2.抽奖条件是,顾客购买商品的金额满100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案a抽奖三次或方案b抽奖两次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为250元.
(1)若顾客A只选择方案a进行抽奖,求其所获奖金为15元的概率;
(2)若顾客A采用每种抽奖方式的可能性都相等,求其最有可能获得的奖金数(除0元外).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=cos($\frac{π}{2}$-x)的最小正周期是2π.

查看答案和解析>>

同步练习册答案