分析 在△ABD中,由余弦定理得DB=$\sqrt{2}$,即$∠ABD=\frac{π}{2}$.$∠DBC=\frac{π}{6}$,点C在射线BT上运动(如图),要使ABCD为平面四边形ABCD,当DC⊥BT时,CD最短,为$\frac{\sqrt{2}}{2}$,当A,D,C共线时,如图,在△ABC2中,由正弦定理可得$A{C}_{2}=3+\sqrt{3}$,$D{C}_{2}=1+\sqrt{3}$.即可得到答案.
解答
解:在△ABD中,∵∠A=45°,∠B=120°,AB=$\sqrt{2}$,AD=2,
由余弦定理得BD2=AD2+AB2-2AD•ABcosA=2.
∴DB=$\sqrt{2}$,即△ABD为等腰直角三角形,$∠ABD=\frac{π}{2}$.
∴$∠DBC=\frac{π}{6}$,
所以点C在射线BT上运动(如图),要使ABCD为平面四边形ABCD,
当DC⊥BT时,CD最短,为$\frac{\sqrt{2}}{2}$,
当A,D,C共线时,如图,在△ABC2中,由正弦定理可得$\frac{A{C}_{2}}{sin12{0}^{0}}=\frac{AB}{sin1{5}^{0}}$
解得$A{C}_{2}=3+\sqrt{3}$,$D{C}_{2}=1+\sqrt{3}$.
∴设CD=t,则t的取值范围是[$\frac{\sqrt{2}}{2}$,1+$\sqrt{3}$),
故答案为:$[{\frac{{\sqrt{2}}}{2},\sqrt{3}+1})$.
点评 本题考查了正余弦定理的应用,动点问题的极端化处理是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 5 | C. | $\frac{31}{48}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1} | B. | {-2} | C. | {-1,0,1} | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | (0,2-ln2) | C. | [1,2-ln2] | D. | [1,2-ln2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+2)2+y2=16 | B. | (x+2)2+y2=20 | C. | (x+2)2+y2=25 | D. | (x+2)2+y2=36 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{10}}}{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>c>a | B. | b>a>c | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com