精英家教网 > 高中数学 > 题目详情
8.如图,在平面直角坐标中,过F(1,0)的直线FM与y轴交于点M,直线MN与直线FM垂直,且与x轴交于点N,T是点N关于直线FM的对称点.
(1)点T的轨迹为曲线C,求曲线C的方程;
(2)椭圆E的中心在坐标原点,F为其右焦点,且离心率为$\frac{1}{2}$,过点F的直线l与曲线C交于A、B两点,与椭圆交于P、Q两点,请问:是否存在直线使A、F、Q是线段PB的四等分点?若存在,求出直线l的方程;若不存在,请说明理由.

分析 (Ⅰ)设T(x,y),可知FM的斜率必存在,故设直线FN的方程为y=k(x-1),求出M(0,-k),N(-k2,0)),由T是点N关于直线FM的对称点,得T的坐标x,y满足$\left\{\begin{array}{l}{x={k}^{2}}\\{y=-2k}\end{array}\right.$.即可得曲线C的方程为y2=4x.
(Ⅱ)易得椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.假设存在直线l使A、F、Q是线段PB的四等分点,当直线l的斜率不存在或为0时,显然不满足题意.设直线l的方程为y=m(x-1)(m≠0).由图形可知,必有2AF=FB.联立方程,利用韦达定理解得m=$±2\sqrt{2}$,再分别验证即可.

解答 解:(Ⅰ)设T(x,y),可知FM的斜率必存在,故设直线FN的方程为y=k(x-1)
令x=0,得M(0,-k),∴当k≠0时,直线MN的方程为y+k=-$\frac{1}{k}x$.
令y=0,得N(-k2,0)),
∵T是点N关于直线FM的对称点∴T的坐标x,y满足$\left\{\begin{array}{l}{x={k}^{2}}\\{y=-2k}\end{array}\right.$.
消去k得y=4x,当k=0时得T(0,0).
曲线C的方程为y2=4x.
(Ⅱ)椭圆E的中心在坐标原点,F为其右焦点,且离心率为$\frac{1}{2}$,
∴椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
假设存在直线l使A、F、Q是线段PB的四等分点,
当直线l的斜率不存在或为0时,显然不满足题意.
设直线l的方程为y=m(x-1)(m≠0).
由图形可知,必有2AF=FB.
设A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=m(x-1)}\\{{y}^{2}=4x}\end{array}\right.$得my2-4y-4m=0;
△=16+16m2>0,∴${y}_{1}+{y}_{2}=\frac{4}{m}$,y1y2=-4;
∵2AF=FB.∴$\frac{{y}_{2}}{{y}_{1}}=-2$,
又∵$\frac{({y}_{1}+{y}_{2})^{2}}{{y}_{1}{y}_{2}}=\frac{{y}_{2}}{{y}_{1}}+2+\frac{{y}_{1}}{{y}_{2}}=-\frac{4}{{m}^{2}}$,
解得m=$±2\sqrt{2}$
①当m=2$\sqrt{2}$时,直线l的方程为y=2$\sqrt{2}$(x-1)
此时解得A($\frac{1}{2}$,-$\sqrt{2}$),B(2,2$\sqrt{2}$).
由$\left\{\begin{array}{l}{y=2\sqrt{2}(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得P($\frac{2}{5}$,-$\frac{6\sqrt{2}}{5}$),Q($\frac{10}{7}$,$\frac{6\sqrt{2}}{7}$).
可得yB≠2yQ,∴点Q不是FB的中点,∴A、F、Q不是线段PB的四等分点.
同理m=-2$\sqrt{2}$时,也可得A、F、Q不是线段PB的四等分点.
综上不存在直线l使A、F、Q是线段PB的四等分点.

点评 本题考查了动点的轨迹方程的求解,直与椭圆的位置关系,方程思想,转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow a=(3,4)$,$\overrightarrow b=(x,1)$,若$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则实数x等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=sin({\frac{π}{2}-x})sinx-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{2}$
(1)求f(x)的最大值及取得最大值时x值;
(2)若方程$f(x)=\frac{2}{3}$在(0,π)上的解为x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面四边形ABCD中,∠A=45°,∠B=120°,AB=$\sqrt{2}$,AD=2.设CD=t,则t的取值范围是[$\frac{\sqrt{2}}{2}$,1+$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点P(x,y)满足$|x|-1≤y≤\sqrt{1-{{|x|}^2}},O$为坐标原点,则使$|{PO}|≥\frac{{\sqrt{2}}}{2}$的概率为(  )
A.$\frac{π}{π+2}$B.$\frac{π}{π+4}$C.$\frac{2}{π+1}$D.$\frac{2}{π+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=($\frac{1+i}{\sqrt{2}}$)2(其中i为虚数单位),则$\overline{z}$=(  )
A.1B.-iC.-1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设(2-x)5=a0+a1x+a2x2+…+a5x5,则$\frac{{a}_{2}+{a}_{4}}{{a}_{1}+{a}_{3}}$的值为(  )
A.-$\frac{61}{60}$B.-$\frac{122}{121}$C.-$\frac{3}{4}$D.-$\frac{90}{121}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.棱长均为2的正四面体ABCD在平面α的一侧,Ω是ABCD在平面α内的正投影,设Ω的面积为S,则S的最大值为2,最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P是圆F1:(x-1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.
(1)求点M的轨迹C的方程;
(2)过点$G({0,\frac{1}{3}})$的动直线l与点M的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案