| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{10}}}{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
分析 根据题意,由向量的坐标计算公式可得$\overrightarrow{OC}$的坐标,由向量模的公式可得|$\overrightarrow{OC}$|=$\sqrt{10({m}^{2}+{n}^{2})}$,由基本不等式的性质可得$\frac{{m}^{2}+{n}^{2}}{2}$≥($\frac{m+n}{2}$)2=$\frac{1}{4}$,即m2+n2≥$\frac{1}{2}$;即可得答案.
解答 解:根据题意,向量$\overrightarrow{OA}=({3,1}),\overrightarrow{OB}=({-1,3})$,
则$\overrightarrow{OC}$=m$\overrightarrow{OA}$-n$\overrightarrow{OB}$=(3m+n,m-3n),
|$\overrightarrow{OC}$|=$\sqrt{(3m+n)^{2}+(m-3n)^{2}}$=$\sqrt{10({m}^{2}+{n}^{2})}$,
又由m+n=1,
则有$\frac{{m}^{2}+{n}^{2}}{2}$≥($\frac{m+n}{2}$)2=$\frac{1}{4}$,即m2+n2≥$\frac{1}{2}$;
故|$\overrightarrow{OC}$|=$\sqrt{10({m}^{2}+{n}^{2})}$≥$\sqrt{5}$,
即|$\overrightarrow{OC}$|的最小值为$\sqrt{5}$;
故选:C.
点评 本题考查向量的模的运算,关键是求出向量|$\overrightarrow{OC}$|的坐标,结合基本不等式进行分析.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -i | C. | -1 | D. | i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{61}{60}$ | B. | -$\frac{122}{121}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{90}{121}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com